Back to Search Start Over

The Fatou coordinate for parabolic Dulac germs

Authors :
Vesna Županović
Maja Resman
Pavao Mardešić
Jean-Philippe Rolin
Institut de Mathématiques de Bourgogne [Dijon] (IMB)
Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
Department of Mathematics [Zagreb]
Faculty of Science [Zagreb]
University of Zagreb-University of Zagreb
Department of Applied Mathematics [Zagreb]
Faculty of Electrical Engineering and Computing [Zagreb] (FER)
This research was supported by: Croatian Science Foundation (HRZZ) project no. 2285, French ANR project STAAVF, French–Croatian bilateral Cogito project 33003TJClassification de points fixes et de singularités à l'aide d'epsilon-voisinages d'orbites et de courbes, Croatian UKF project Classifications of Dulac maps and epsilon-neighborhoods, My first collaboration grant 2018, project no. 7, the University of Zagreb research support for 2015 and 2016.
ANR-11-BS01-0009,STAAVF,Singularités de Trajectoires de Champs de Vecteurs Analytiques et Algébriques(2011)
Source :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2019, 266 (6), pp.3479-3513. ⟨10.1016/j.jde.2018.09.008⟩
Publication Year :
2019

Abstract

We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated log scale.<br />31 pages. arXiv admin note: text overlap with arXiv:1606.02581

Details

Language :
English
ISSN :
00220396 and 10902732
Database :
OpenAIRE
Journal :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2019, 266 (6), pp.3479-3513. ⟨10.1016/j.jde.2018.09.008⟩
Accession number :
edsair.doi.dedup.....15329e2077e198679b3b2597db2f1f30
Full Text :
https://doi.org/10.1016/j.jde.2018.09.008