Back to Search
Start Over
The Fatou coordinate for parabolic Dulac germs
- Source :
- Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2019, 266 (6), pp.3479-3513. ⟨10.1016/j.jde.2018.09.008⟩
- Publication Year :
- 2019
-
Abstract
- We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated log scale.<br />31 pages. arXiv admin note: text overlap with arXiv:1606.02581
- Subjects :
- Pure mathematics
Monomial
Class (set theory)
Mathematics::Dynamical Systems
Constructive proof
Logarithm
Transseries
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
orbits
Dulac germ
Asymptotic expansion
Dynamical Systems (math.DS)
01 natural sciences
MSC: 37C05, 34C07, 30B10, 30B12, 39A06, 34E05, 37C10, 37C15
37C05, 34C07, 30B10, 30B12, 39A06, 34E05, 37C10, 37C15
Mathematics::Algebraic Geometry
FOS: Mathematics
0101 mathematics
Mathematics - Dynamical Systems
Mathematics
Fatou coordinate
Embedding in a flow
diffeomorphisms
Mathematics::Complex Variables
Applied Mathematics
010102 general mathematics
010101 applied mathematics
classification
normal forms
epsilon-neighborhoods
Analysis
Subjects
Details
- Language :
- English
- ISSN :
- 00220396 and 10902732
- Database :
- OpenAIRE
- Journal :
- Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2019, 266 (6), pp.3479-3513. ⟨10.1016/j.jde.2018.09.008⟩
- Accession number :
- edsair.doi.dedup.....15329e2077e198679b3b2597db2f1f30
- Full Text :
- https://doi.org/10.1016/j.jde.2018.09.008