Back to Search
Start Over
2,3,7,8-Tetrachlorodibenzo-p-dioxin and diindolylmethanes differentially induce cytochrome P450 1A1, 1B1, and 19 in H295R human adrenocortical carcinoma cells
- Source :
- Toxicological sciences : an official journal of the Society of Toxicology. 61(1)
- Publication Year :
- 2001
-
Abstract
- Diindolylmethane (DIM) is an acid-catalyzed condensation product of indole-3-carbinol, a constituent of cruciferous vegetables, and is formed in the stomach. DIM alters estrogen metabolism and inhibits carcinogen-induced mammary tumor growth in rodents. DIM is a weak agonist for the aryl hydrocarbon (Ah) receptor and blocks the effects of estrogens via inhibitory Ah receptor-estrogen receptor cross-talk. DIM and various structural analogs were examined in H295R cells for effects on 3 cytochrome P450 (CYP) enzymes involved in estrogen synthesis and/or metabolism: CYP1A1, CYP1B1, and CYP19 (aromatase). Aromatase activity was measured by conversion of 1 beta-(3)H-androstenedione to estrone and (3)H(2)O. H295R cells were exposed to the test chemicals dissolved in dimethyl sulfoxide for 24 h prior to analyses. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) (0--30 nM) and DIM (0--10 microM) induced ethoxyresorufin-O-deethylase (EROD) activity, as a measure of CYP1A1 and possibly 1B1 activity, with EC(50) values of about 0.3 nM and 3 microM, respectively. DIM, but not TCDD, induced aromatase activity with an apparently maximal 2-fold increase at 10 microM; higher concentrations of DIM and many of its analogs were cytotoxic. TCDD (30 nM) significantly increased CYP1A1 and 1B1 mRNA levels, but had no effect on mRNA for CYP19. DIM (3 microM) significantly increased mRNA levels for all three CYPS: DIM analogs with substitutions on the 5 and 5' position (3 microM) induced aromatase and EROD activity, together with mRNA levels of CYP1A1, 1B1, and 19; analogs that were substituted on the central carbon of the methane group showed little or no inductive activity toward the CYPS: In conclusion, DIM and several of its analogs appear to induce CYPs via multiple yet distinct pathways in H295R human adrenocortical carcinoma cells.
- Subjects :
- medicine.medical_specialty
Indoles
Polychlorinated Dibenzodioxins
Cell Survival
CYP1B1
Radioimmunoassay
Diindolylmethane
Tetrazolium Salts
Estrone
Toxicology
Tritium
Cell Line
Iodine Radioisotopes
chemistry.chemical_compound
Structure-Activity Relationship
Aromatase
Cytochrome P-450 Enzyme System
Internal medicine
medicine
Adrenocortical Carcinoma
Cytochrome P-450 CYP1A1
Tumor Cells, Cultured
Cytochrome P-450 Enzyme Inhibitors
Humans
heterocyclic compounds
RNA, Messenger
Receptor
Unspecific monooxygenase
Formazans
biology
Dose-Response Relationship, Drug
Aromatase Inhibitors
Reverse Transcriptase Polymerase Chain Reaction
Cytochrome P450
Endocrinology
Mechanism of action
chemistry
Receptors, Aryl Hydrocarbon
Enzyme Induction
Cytochrome P-450 CYP1B1
biology.protein
Adrenal Cortex
Aryl Hydrocarbon Hydroxylases
medicine.symptom
Subjects
Details
- ISSN :
- 10966080
- Volume :
- 61
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Toxicological sciences : an official journal of the Society of Toxicology
- Accession number :
- edsair.doi.dedup.....155741ca75099d873d4b48dd1665ca53