Back to Search Start Over

Interplay of nonlinear diffusion, initial tails and Allee effect on the speed of invasions

Authors :
Thomas Giletti
Matthieu Alfaro
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Annali della Scuola Normale Superiore di Pisa, Annali della Scuola Normale Superiore di Pisa, In press, ⟨10.2422/2036-2145.201711_010⟩
Publication Year :
2020
Publisher :
Scuola Normale Superiore - Edizioni della Normale, 2020.

Abstract

We focus on the spreading properties of solutions of monostable equations with non-linear diffusion. We consider both the porous medium diffusion and the fast diffusion regimes. Initial data may have heavy tails, which tends to accelerate the invasion phenomenon. On the other hand, the nonlinearity may involve a weak Allee effect, which tends to slow down the process. We study the balance between these three effects (nonlin-ear diffusion, initial tail, KPP nonlinearity/Allee effect), revealing the separation between "no acceleration" and "acceleration". In most of the cases where acceleration occurs, we also give an accurate estimate of the position of the level sets.<br />arXiv admin note: text overlap with arXiv:1505.04626

Details

ISSN :
20362145 and 0391173X
Database :
OpenAIRE
Journal :
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
Accession number :
edsair.doi.dedup.....155b509b16e1c0925693809f1f6e0fe6
Full Text :
https://doi.org/10.2422/2036-2145.201711_010