Back to Search Start Over

Introduction of Non-Linear Elasticity Models for the Characterization of Isolated Adult Cardiocyte Contractility

Authors :
Peter Blomgren
Trevor Hawkins
Paul Paolini
David Torres Barba
Carlos Bazan
Source :
Biophysical Journal. (3):593a
Publisher :
Biophysical Society. Published by Elsevier Inc.

Abstract

We are exploring the viability of a novel approach to cardiocyte contractility assessment based on biomechanical properties of the cardiac cells, energy conservation principles, and information content measures. We define our measure of cell contraction as being the distance between the shapes of the contracting cell, assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To guarantee a meaningful vis-a-vis correspondence between the two shapes, we employ both a data fidelity term and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material. We tested this approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned. We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.

Details

Language :
English
ISSN :
00063495
Issue :
3
Database :
OpenAIRE
Journal :
Biophysical Journal
Accession number :
edsair.doi.dedup.....15a9047830ccddc7484787b10cb20034
Full Text :
https://doi.org/10.1016/j.bpj.2011.11.3231