Back to Search Start Over

Exploiting Transitivity for Entity Matching

Authors :
Baas, J.
Dastani, Mehdi
Feelders, Ad
Verborgh, Ruben
Dimou, Anastasia
Hogan, Aidan
d'Amato, Claudia
Tiddi, Ilaria
Bröring, Arne
Mayer, Simon
Ongenae, Femke
Tommasini, Riccardo
Alam, Mehwish
Sub Intelligent Systems
Sub Algorithmic Data Analysis
Intelligent Systems
Source :
The Semantic Web: ESWC 2021 Satellite Events ISBN: 9783030804176, ESWC (Satellite Events), The Semantic Web: ESWC 2021 Satellite Events, 12739, 109. Springer
Publication Year :
2021
Publisher :
Springer International Publishing, 2021.

Abstract

The goal of entity matching in knowledge graphs is to identify sets of entities that refer to the same real-world object. Methods for entity matching in knowledge graphs, however, produce a collection of pairs of entities claimed to be duplicates. This collection that represents the sameAs relation may fail to satisfy some of its structural properties such as transitivity. We show that an ad-hoc enforcement of transitivity on the set of identified entity pairs may decrease precision. We therefore propose a methodology that starts with a given similarity measure, generates a set of entity pairs, and applies cluster editing to enforce transitivity, leading to overall improved performance.

Details

ISBN :
978-3-030-80417-6
ISSN :
03029743
ISBNs :
9783030804176
Database :
OpenAIRE
Journal :
The Semantic Web: ESWC 2021 Satellite Events ISBN: 9783030804176, ESWC (Satellite Events), The Semantic Web: ESWC 2021 Satellite Events, 12739, 109. Springer
Accession number :
edsair.doi.dedup.....16ce5bad520428d09a586f80d60f2148
Full Text :
https://doi.org/10.1007/978-3-030-80418-3_20