Back to Search Start Over

Astrometric calibration and performance of the Dark Energy Camera

Authors :
E. Suchyta
Darren L. DePoy
E. S. Rykoff
A. Benoit-Lévy
Shantanu Desai
H. T. Diehl
Mathew Smith
Ramon Miquel
V. Scarpine
Elisabeth Krause
David J. James
Michael Schubnell
Kevin Reil
R. H. Schindler
Daniel Gruen
Tianjun Li
Felipe Menanteau
J. Gschwend
Juan Garcia-Bellido
David J. Brooks
Gary Bernstein
D. W. Gerdes
Ricardo L. C. Ogando
G. Tarle
Robert Armstrong
Steve Kent
A. Roodman
Flavia Sobreira
D. L. Burke
P. Fosalba
M. Carrasco Kind
A. Carnero Rosell
Jennifer L. Marshall
M. E. C. Swanson
S. Allam
Robert A. Gruendl
T. F. Eifler
Keith Bechtol
Kyler Kuehn
R. C. Smith
J. Carretero
M. March
Enrique J. Fernández
K. Honscheid
T. M. C. Abbott
M. A. G. Maia
Joshua A. Frieman
I. Sevilla-Noarbe
E. J. Sanchez
N. Kuropatkin
A. A. Plazas
Carlos E. Cunha
L. N. da Costa
Alistair R. Walker
Marcelle Soares-Santos
G. Gutierrez
Institut d'Astrophysique de Paris ( IAP )
Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS )
DES
Institut d'Astrophysique de Paris (IAP)
Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Publ.Astron.Soc.Pac., Publ.Astron.Soc.Pac., 2017, 129, pp.074503. 〈10.1088/1538-3873/aa6c55〉, Publ.Astron.Soc.Pac., 2017, 129 (977), pp.074503. ⟨10.1088/1538-3873/aa6c55⟩, NASA Astrophysics Data System
Publication Year :
2017
Publisher :
arXiv, 2017.

Abstract

We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500~Mpix, 3 deg^2 science field of view, and across 4 years of operation. This is done using internal comparisons of ~4x10^7 measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to ~10 um when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and 5-10 arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density ~0.7 arcmin^{-2}, e.g. from Gaia, the typical atmospheric distortions can be interpolated to 7 mas RMS accuracy (for 30 s exposures) with 1 arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas (0.02 pixels, or 300 nm) on the focal plane, plus the stochastic atmospheric distortion.<br />Comment: Submitted to PASP

Details

Database :
OpenAIRE
Journal :
Publ.Astron.Soc.Pac., Publ.Astron.Soc.Pac., 2017, 129, pp.074503. 〈10.1088/1538-3873/aa6c55〉, Publ.Astron.Soc.Pac., 2017, 129 (977), pp.074503. ⟨10.1088/1538-3873/aa6c55⟩, NASA Astrophysics Data System
Accession number :
edsair.doi.dedup.....170fff38ab831a7f5084d9f95225877b
Full Text :
https://doi.org/10.48550/arxiv.1703.01679