Back to Search
Start Over
Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy
- Source :
- Progress in biophysics and molecular biology. 139
- Publication Year :
- 2018
-
Abstract
- In mathematical pharmacology, models are constructed to confer a robust method for optimizing treatment. The predictive capability of pharmacological models depends heavily on the ability to track the system and to accurately determine parameters with reference to the sensitivity in projected outcomes. To closely track chaotic systems, one may choose to apply chaos synchronization. An advantageous byproduct of this methodology is the ability to quantify model parameters. In this paper, we illustrate the use of chaos synchronization combined with Nelder-Mead search to estimate parameters of the well-known Kirschner-Panetta model of IL-2 immunotherapy from noisy data. Chaos synchronization with Nelder-Mead search is shown to provide more accurate and reliable estimates than Nelder-Mead search based on an extended least squares (ELS) objective function. Our results underline the strength of this approach to parameter estimation and provide a broader framework of parameter identification for nonlinear models in pharmacology.
- Subjects :
- 0301 basic medicine
Computer science
Estimation theory
Biophysics
Models, Immunological
Predictive capability
Article
CHAOS (operating system)
03 medical and health sciences
Nonlinear system
Identification (information)
030104 developmental biology
Nonlinear Dynamics
Neoplasms
Synchronization (computer science)
Humans
Sensitivity (control systems)
Immunotherapy
Nelder–Mead method
Molecular Biology
Algorithm
Subjects
Details
- ISSN :
- 18731732
- Volume :
- 139
- Database :
- OpenAIRE
- Journal :
- Progress in biophysics and molecular biology
- Accession number :
- edsair.doi.dedup.....17145d4bd7abd366ea2d04b5d6f7c629