Back to Search Start Over

An Earth-sized exoplanet with a Mercury-like composition

Authors :
R. Ligi
H. Giles
M. J. Hobson
Olivier Demangeon
James Kirk
Artyom Aguichine
Francesco Pepe
Amanda P. Doyle
V. Adibekyan
E. Delgado Mena
Daniel Bayliss
Francesca Faedi
James McCormac
Nuno C. Santos
K. W. F. Lam
David Barrado
Guillaume Hébrard
Alexandre Santerne
George W. King
Aldo S. Bonomo
Hugh P. Osborn
E. Foxell
Jorge Lillo-Box
Arthur Vigan
H. Gosselin
Rodrigo F. Díaz
Stéphane Udry
François Bouchy
Xavier Dumusque
J. J. Neal
João P. Faria
Tom Louden
S. G. Sousa
S. Hojjatpanah
B. Brugger
Duncan A. Brown
C. Lovis
Magali Deleuil
Jose-Manuel Almenara
Isabelle Boisse
S. C. C. Barros
Pedro Figueira
David J. Armstrong
James A. G. Jackman
Don Pollacco
Olivier Mousis
Laboratoire d'Astrophysique de Marseille (LAM)
Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES)
Source :
Nature Astronomy, Nature Astronomy, Nature Publishing Group, 2018, 2 (5), pp.393-400. ⟨10.1038/s41550-018-0420-5⟩, Nature Astronomy, 2018, 2 (5), pp.393-400. ⟨10.1038/s41550-018-0420-5⟩
Publication Year :
2018

Abstract

The Earth, Venus, Mars, and some extrasolar terrestrial planets have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle. At the inner frontier of the solar system, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact, mantle evaporation, or the depletion of silicate at the inner-edge of the proto-planetary disk. These scenarios are still strongly debated. Here we report the discovery of a multiple transiting planetary system (K2-229), in which the inner planet has a radius of 1.165+/-0.066 Rearth and a mass of 2.59+/-0.43 Mearth. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, while it was expected to be similar to that of the Earth based on host-star chemistry. This larger Mercury analogue either formed with a very peculiar composition or it has evolved since, e.g. by losing part of its mantle. Further characterisation of Mercury-like exoplanets like K2-229 b will help putting the detailed in-situ observations of Mercury (with Messenger and BepiColombo) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.<br />Accepted preprint in Nature Astronomy. Publisher-edited version available at http://rdcu.be/JRE7 Supplement materials available at https://www.nature.com/articles/s41550-018-0420-5

Details

Language :
English
ISSN :
23973366
Database :
OpenAIRE
Journal :
Nature Astronomy, Nature Astronomy, Nature Publishing Group, 2018, 2 (5), pp.393-400. ⟨10.1038/s41550-018-0420-5⟩, Nature Astronomy, 2018, 2 (5), pp.393-400. ⟨10.1038/s41550-018-0420-5⟩
Accession number :
edsair.doi.dedup.....1745736664a7c89782bc43449862df81
Full Text :
https://doi.org/10.1038/s41550-018-0420-5⟩