Back to Search
Start Over
On locally superquadratic Hamiltonian systems with periodic potential
- Source :
- Boundary Value Problems, Vol 2020, Iss 1, Pp 1-11 (2020)
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- In this paper, we study the second-order Hamiltonian systems $$ \ddot{u}-L(t)u+\nabla W(t,u)=0, $$ u ¨ − L ( t ) u + ∇ W ( t , u ) = 0 , where $t\in \mathbb{R}$ t ∈ R , $u\in \mathbb{R}^{N}$ u ∈ R N , L and W depend periodically on t, 0 lies in a spectral gap of the operator $-d^{2}/dt^{2}+L(t)$ − d 2 / d t 2 + L ( t ) and $W(t,x)$ W ( t , x ) is locally superquadratic. Replacing the common superquadratic condition that $\lim_{|x|\rightarrow \infty }\frac{W(t,x)}{|x|^{2}}=+\infty $ lim | x | → ∞ W ( t , x ) | x | 2 = + ∞ uniformly in $t\in \mathbb{R}$ t ∈ R by the local condition that $\lim_{|x|\rightarrow \infty }\frac{W(t,x)}{|x|^{2}}=+\infty $ lim | x | → ∞ W ( t , x ) | x | 2 = + ∞ a.e. $t\in J$ t ∈ J for some open interval $J\subset \mathbb{R}$ J ⊂ R , we prove the existence of one nontrivial homoclinic soluiton for the above problem.
- Subjects :
- Algebra and Number Theory
Partial differential equation
Operator (physics)
010102 general mathematics
Mathematical analysis
lcsh:QA299.6-433
lcsh:Analysis
Linking theorem
01 natural sciences
Periodic potential
Homoclinic solutions
Hamiltonian system
010101 applied mathematics
Ordinary differential equation
Spectral gap
Strongly indefinite functional
Nabla symbol
Homoclinic orbit
Hamiltonian systems
0101 mathematics
Locally superquadratic
Analysis
Mathematical physics
Mathematics
Subjects
Details
- ISSN :
- 16872770
- Volume :
- 2020
- Database :
- OpenAIRE
- Journal :
- Boundary Value Problems
- Accession number :
- edsair.doi.dedup.....174f1f38eb39179ac366b528ba329228
- Full Text :
- https://doi.org/10.1186/s13661-020-01444-y