Back to Search Start Over

DNA methylation-based classification of sinonasal undifferentiated carcinoma

Authors :
Marc Cohen
Amir Momeni Boroujeni
Marc Ladanyi
Ryan Ptashkin
Michael F. Berger
Matija Snuderl
Deborah J. Chute
Snjezana Dogan
Ian Ganly
Hun Jae Jung
Sarah Chiang
Varshini Vasudevaraja
Bin Xu
Achim A. Jungbluth
Ronald Ghossein
Jonathan Serrano
Source :
Mod Pathol
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Sinonasal undifferentiated carcinoma (SNUC) is an aggressive malignancy harboring IDH2 R172 mutations in >80% cases. We explored the potential of genome-wide DNA methylation profiling to elucidate tumor biology and improve the diagnosis of sinonasal undifferentiated carcinoma and its histologic mimics. Forty-two cases, including sinonasal undifferentiated, large cell neuroendocrine, small cell neuroendocrine, and SMARCB1-deficient carcinomas and olfactory neuroblastoma, were profiled by Illumina Infinium Methylation EPIC array interrogating >850,000 CpG sites. The data were analyzed using a custom bioinformatics pipeline. IDH2 mutation status was determined by the targeted exome sequencing (MSK- IMPACTTM) in most cases. H3K27 methylation level was assessed by the immunohistochemistry-based H-score. DNA methylation-based semi-supervised hierarchical clustering analysis segregated IDH2 mutants, mostly sinonasal undifferentiated (n = 10) and large cell neuroendocrine carcinomas (n = 4), from other sinonasal tumors, and formed a single cluster irrespective of the histologic type. t-distributed stochastic neighbor embedding dimensionality reduction analysis showed no overlap between IDH2 mutants, SMARCB1-deficient carcinoma and olfactory neuroblastoma. IDH2 mutants demonstrated a global methylation phenotype and an increase in repressive trimethylation of H3K27 in comparison to IDH2 wild-type tumors (p < 0.001). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed no difference in pathway activation between IDH2-mutated sinonasal undifferentiated and large cell neuroendocrine carcinomas. In comparison to SMARCB1-deficient, IDH2-mutated carcinomas were associated with better disease-free survival (p = 0.034) and lower propensity for lung metastasis (p = 0.002). ARID1A mutations were common in small cell neuroendocrine carcinoma but not among IDH2 mutants (3/3 versus 0/18 and p < 0.001). IDH2 mutations in sinonasal carcinomas induce a hypermethylator phenotype and define a molecular subgroup of tumors arising in this location. IDH2- mutated sinonasal undifferentiated carcinoma and large cell neuroendocrine carcinoma likely represent a phenotypic spectrum of the same entity, which is distinct from small cell neuroendocrine and SMARCB1-deficient sinonasal carcinomas. DNA methylation-based analysis of the sinonasal tumors has potential to improve the diagnostic accuracy and classification of tumors arising in this location.

Details

ISSN :
08933952
Volume :
32
Database :
OpenAIRE
Journal :
Modern Pathology
Accession number :
edsair.doi.dedup.....1841d4e8719a7ffa35ea2f65dbca6983
Full Text :
https://doi.org/10.1038/s41379-019-0285-x