Back to Search
Start Over
Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators
- Source :
- SLAS discovery : advancing life sciences RD. 25(5)
- Publication Year :
- 2020
-
Abstract
- K+ channels play a critical role in maintaining the normal electrical activity of excitable cells by setting the cell resting membrane potential and by determining the shape and duration of the action potential. In nonexcitable cells, K+ channels establish electrochemical gradients necessary for maintaining salt and volume homeostasis of body fluids. Inward rectifier K+ (Kir) channels typically conduct larger inward currents than outward currents, resulting in an inwardly rectifying current versus voltage relationship. This property of inward rectification results from the voltage-dependent block of the channels by intracellular polyvalent cations and makes these channels uniquely designed for maintaining the resting potential near the K+ equilibrium potential (EK). The Kir family of channels consist of seven subfamilies of channels (Kir1.x through Kir7.x) that include the classic inward rectifier (Kir2.x) channel, the G-protein-gated inward rectifier K+ (GIRK) (Kir3.x), and the adenosine triphosphate (ATP)-sensitive (KATP) (Kir 6.x) channels as well as the renal Kir1.1 (ROMK), Kir4.1, and Kir7.1 channels. These channels not only function to regulate electrical/electrolyte transport activity, but also serve as effector molecules for G-protein-coupled receptors (GPCRs) and as molecular sensors for cell metabolism. Of significance, Kir channels represent promising pharmacological targets for treating a number of clinical conditions, including cardiac arrhythmias, anxiety, chronic pain, and hypertension. This review provides a brief background on the structure, function, and pharmacology of Kir channels and then focuses on describing and evaluating current high-throughput screening (HTS) technologies, such as membrane potential-sensitive fluorescent dye assays, ion flux measurements, and automated patch clamp systems used for Kir channel drug discovery.
- Subjects :
- 0301 basic medicine
Potassium Channels
Drug Evaluation, Preclinical
Biochemistry
Analytical Chemistry
03 medical and health sciences
0302 clinical medicine
Automated patch clamp
Potassium Channel Blockers
Humans
G protein-coupled inwardly-rectifying potassium channel
Potassium Channels, Inwardly Rectifying
G protein-coupled receptor
Membrane potential
Inward-rectifier potassium ion channel
Chemistry
Resting potential
Potassium channel
High-Throughput Screening Assays
030104 developmental biology
G Protein-Coupled Inwardly-Rectifying Potassium Channels
ROMK
Biophysics
Molecular Medicine
030217 neurology & neurosurgery
Biotechnology
Subjects
Details
- ISSN :
- 24725560
- Volume :
- 25
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- SLAS discovery : advancing life sciences RD
- Accession number :
- edsair.doi.dedup.....1889099b68c6e9cda865129b8f0b6cb6