Back to Search Start Over

A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC

Authors :
Guo-Sheng Han
Vo Anh
Zu-Guo Yu
Source :
Journal of Theoretical Biology. 344:31-39
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

Membrane proteins play important roles in many biochemical processes and are also attractive targets of drug discovery for various diseases. The elucidation of membrane protein types provides clues for understanding the structure and function of proteins. Recently we developed a novel system for predicting protein subnuclear localizations. In this paper, we propose a simplified version of our system for predicting membrane protein types directly from primary protein structures, which incorporates amino acid classifications and physicochemical properties into a general form of pseudo-amino acid composition. In this simplified system, we will design a two-stage multi-class support vector machine combined with a two-step optimal feature selection process, which proves very effective in our experiments. The performance of the present method is evaluated on two benchmark datasets consisting of five types of membrane proteins. The overall accuracies of prediction for five types are 93.25% and 96.61% via the jackknife test and independent dataset test, respectively. These results indicate that our method is effective and valuable for predicting membrane protein types. A web server for the proposed method is available at http://www.juemengt.com/jcc/memty_page.php.

Details

ISSN :
00225193
Volume :
344
Database :
OpenAIRE
Journal :
Journal of Theoretical Biology
Accession number :
edsair.doi.dedup.....18900a29b424b6dc928a4198a90c613f
Full Text :
https://doi.org/10.1016/j.jtbi.2013.11.017