Back to Search Start Over

Structural phase transitions in the geometric ferroelectric LaTaO4

Authors :
Grant William Howieson
Ram S. Katiyar
Finlay D. Morrison
James F. Scott
K. K. Mishra
Alexandra S. Gibbs
Michael A. Carpenter
EPSRC
University of St Andrews. School of Chemistry
University of St Andrews. Centre for Designer Quantum Materials
University of St Andrews. EaSTCHEM
Source :
Physical Review B. 103
Publication Year :
2021
Publisher :
American Physical Society (APS), 2021.

Abstract

Funding: School of Chemistry, University of St Andrews for funding of a studentship to GWH through the EPSRC doctoral training grant (Grant No. EP/N509759/1). This work was also facilitated by funding provided by the EPSRC (Grant No. EP/P024637/1). K.K.M. and R.S.K. acknowledge financial support from the Department of Defense, USA (DoD Grant No. FA9550-20-1-0064). The RUS component of this work was funded by EPSRC Grant No. EP/P024904/1. The recent report of an intermediate incommensurately modulated orthorhombic phase in LaTaO4 has prompted a re-examination of the phase transition sequence in LaTaO4 as a function of temperature. With falling temperature, the sequence of phases examined is (orthorhombic) Cmc21(C)↔Cmc21(IC)↔(monoclinic)P21/c, with C and IC denoting commensurate and incommensurate phases, respectively. The orthorhombic to monoclinic transition, Tm-o, is a first order reconstructive transition occurring at 440 K and TIC-C is a first-order displacive transition occurring at 500-530 K. Strain and elasticity data confirm a first-order transition between the basic and modulated Cmc21 phases, with similarities to the isostructural fluoride BaMnF4. A Raman spectroscopic study of the LaTaO4 phase transition indicates that the IC-C phase transition is driven by a soft zone-boundary phonon (unstable) of the commensurate orthorhombic (Cmc21) phase. The soft phonon is found to appear (underdamped) above 443 K and vanishes (overdamped) around 528 K. A large supercell of the monoclinic phase below Tm-o is proposed based on the Raman spectroscopic results. Publisher PDF

Details

ISSN :
24699969 and 24699950
Volume :
103
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi.dedup.....18b3c71dcaf8c1589af4a63a448d1ed1
Full Text :
https://doi.org/10.1103/physrevb.103.014119