Back to Search
Start Over
Numerical Study on Characteristics of Bedrock and Surface Failure in Mining of Shallow-Buried MCS
- Source :
- Energies; Volume 15; Issue 9; Pages: 3446
- Publication Year :
- 2022
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2022.
-
Abstract
- Coal is one of the important energy sources for industry. When it is mined, it will cause the destruction of bedrock and surface. However, it is more severe in mining shallow-buried multi coal seams (SBMCS). To better reveal the characteristics of the bedrock and surface damage, we have carried out a theoretical analysis, as well as used numerical simulations and field monitoring methods to study the surface and bedrock damage caused by the mining of SBMCS. The characteristics of bedrock and surface failure structure, settlement, and stress distribution were studied and analyzed. The findings show that the collapsed block, formed by the rupture of the overlying stratum, interacts with the surrounding rock to form large cavities and gaps, and the stress concentration occurs between them. The maximum downward vertical concentration stress is about 9.79 MPa. The mining of the lower coal seam can lead to repeated failure of the upper bedrock and goaf. The settlement of bedrock presents gradient change, and the settlement of upper bedrock is large, about 8.0 m, and the maximum settlement is 8.183 m, while that of lower bedrock is small and about 3.5–4.0 m. The weak rock stratum in the bedrock is crushed by the change stress of repeated mining, and formed a broken rock stratum. The cracks in the bedrock develop directly to the ground. On the ground, tensile cracks, compression uplift, stepped cracks, and even collapse pits are easy to cause in mining SBMCS. Affected by repeated mining, the variation of surface vertical stress is complex and disorderly in the middle of the basin, and the variation of horizontal stress is mainly concentrated on the edge of the basin. The maximum stress reaches 100 KPa, and the minimum stress is about 78 KPa. Through theoretical analysis and discussion, the size of the key blocks is directly related to the thickness and strength of the rock stratum.
- Subjects :
- Control and Optimization
coal mining
multi coal seam
CDEM
numerical simulation
bedrock failure
surface damage
Renewable Energy, Sustainability and the Environment
Energy Engineering and Power Technology
Electrical and Electronic Engineering
Engineering (miscellaneous)
Energy (miscellaneous)
Subjects
Details
- Language :
- English
- ISSN :
- 19961073
- Database :
- OpenAIRE
- Journal :
- Energies; Volume 15; Issue 9; Pages: 3446
- Accession number :
- edsair.doi.dedup.....18dad7bf0baa463853c1c40b7207c68f
- Full Text :
- https://doi.org/10.3390/en15093446