Back to Search Start Over

Morphologic Change of Parvalbumin-positive Myelinated Axons in the Human Dental Pulp

Authors :
Jae Sik Lee
Tae Heon Kim
Sook Kyung Park
Yong Chul Bae
So Young Choi
Source :
Journal of Endodontics. 43:977-981
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Introduction Information on the nerve fibers innervating the dental pulp is crucial for understanding dental pain and hypersensitivity. This study investigated the morphologic differences of parvalbumin (PV)-positive (+) myelinated fibers in 3 different regions of the human dental pulp. Methods Light and electron microscopic immunohistochemistry for parvalbumin, a marker for myelinated fibers, and quantitative analysis were performed in the apical root, core of coronal pulp, and peripheral pulp of human premolar teeth. Results About 40% of the myelinated fibers in the apical root pulp became unmyelinated in the core of the coronal pulp, and virtually all the remaining fibers became unmyelinated at the peripheral pulp. The size of myelinated axons decreased from root to peripheral pulp. PV+ axons showed extensive axonal varicosities in the peripheral pulp. Conclusions These findings suggest that the myelinated fibers innervating the human dental pulp undergo extensive morphologic change in the extrapulpal region and in the coronal and peripheral pulp, and that PV-mediated regulation of calcium concentration and its downstream events may occur primarily in axonal varicosities in the peripheral pulp.

Details

ISSN :
00992399
Volume :
43
Database :
OpenAIRE
Journal :
Journal of Endodontics
Accession number :
edsair.doi.dedup.....18e3c3c1c6863841aafefe0f455b6d20
Full Text :
https://doi.org/10.1016/j.joen.2017.01.010