Back to Search Start Over

From analytical mechanical problems to rewriting theory through M. Janet's work

Authors :
Philippe Malbos
Kenji Iohara
Algèbre, géométrie, logique (AGL)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Two algebraic byways from differential equations : Gröbner Bases and Quivers, Two algebraic byways from differential equations : Gröbner Bases and Quivers, 28, Springer, 2020, Algorithms and Computations in Mathematics, ⟨10.1007/978-3-030-26454-3_1⟩, Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers ISBN: 9783030264536
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

This chapter is devoted to a survey of the historical background of Grobner bases for D-modules and linear rewriting theory largely developed in algebra throughout the twentieth century and to present deep relationships between them. Completion methods are the main streams for these computational theories. In the theory of Grobner bases, they were motivated by algorithmic problems in elimination theory such as computations in quotient polynomial rings modulo an ideal, manipulating algebraic equations, and computing Hilbert series. In rewriting theory, they were motivated by computation of normal forms and linear bases for algebras and computational problems in homological algebra.

Details

Language :
English
ISBN :
978-3-030-26453-6
ISBNs :
9783030264536
Database :
OpenAIRE
Journal :
Two algebraic byways from differential equations : Gröbner Bases and Quivers, Two algebraic byways from differential equations : Gröbner Bases and Quivers, 28, Springer, 2020, Algorithms and Computations in Mathematics, ⟨10.1007/978-3-030-26454-3_1⟩, Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers ISBN: 9783030264536
Accession number :
edsair.doi.dedup.....19440deda8576c471f43933a54fd26d6
Full Text :
https://doi.org/10.1007/978-3-030-26454-3_1⟩