Back to Search Start Over

Fluctuation-induced forces on an atom near a photonic topological material

Authors :
George W. Hanson
Mário G. Silveirinha
Mauro Antezza
S. Ali Hassani Gangaraj
Universidade de Lisboa (ULISBOA)
Columbia University [New York]
University of Wisconsin - Milwaukee
Laboratoire Charles Coulomb (L2C)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Théorie du rayonnement matière et phénomènes quantiques
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Physical Review A, Physical Review A, American Physical Society, 2018, 97, pp.022509. ⟨10.1103/PhysRevA.97.022509⟩
Publication Year :
2017

Abstract

International audience; We theoretically study the Casimir-Polder force on an atom in an arbitrary initial state in a rather general electromagnetic environment wherein the materials may have a nonreciprocal bianisotropic dispersive response. It is shown that under the Markov approximation the force has resonant and nonresonant contributions. We obtain explicit expressions for the optical force both in terms of the system Green function and of the electromagnetic modes. We apply the theory to the particular case wherein a two-level system interacts with a topological gyrotropic material, showing that the nonreciprocity enables exotic light-matter interactions and the opportunity to sculpt and tune the Casimir-Polder forces on the nanoscale. With a quasistatic approximation, we obtain a simple analytical expression for the optical force and unveil the crucial role of surface plasmons in fluctuation-induced forces. Finally, we derive the Green function for a gyrotropic material half-space in terms of a Sommerfeld integral.

Details

Language :
English
ISSN :
10502947 and 10941622
Database :
OpenAIRE
Journal :
Physical Review A, Physical Review A, American Physical Society, 2018, 97, pp.022509. ⟨10.1103/PhysRevA.97.022509⟩
Accession number :
edsair.doi.dedup.....198b0435206fe61d121cac368c0b94cc
Full Text :
https://doi.org/10.1103/PhysRevA.97.022509⟩