Back to Search Start Over

Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase

Authors :
Ángel T. Martínez
Eva Garcia-Ruiz
David Gonzalez-Perez
Francisco J. Ruiz-Dueñas
Miguel Alcalde
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname, Biochemical Journal
Publication Year :
2011
Publisher :
Portland Press Ltd., 2011.

Abstract

12 páginas, 5 figuras, 2 tablas -- PAGS nros. 487-498<br />The VPs (versatile peroxidases) secreted by white-rot fungi are involved in the natural decay of lignin. In the present study, a fusion gene containing the VP from Pleurotus eryngii was subjected to six rounds of directed evolution, achieving a level of secretion in Saccharomyces cerevisiae (21 mg/l) as yet unseen for any ligninolytic peroxidase. The evolved variant for expression harboured four mutations and increased its total VP activity 129-fold. The signal leader processing by the STE13 protease at the Golgi compartment changed as a consequence of overexpression, retaining the additional N-terminal sequence Glu-Ala-Glu-Ala that enhanced secretion. The engineered N-terminally truncated variant displayed similar biochemical properties to those of the non-truncated counterpart in terms of kinetics, stability and spectroscopic features. Additional cycles of evolution raised the T50 8°C and significantly increased the enzyme's stability at alkaline pHs. In addition, the Km for H2O2 was enhanced up to 15-fold while the catalytic efficiency was maintained, and there was an improvement in peroxide stability (with half-lives for H2O2 of 43 min at a H2O2/enzyme molar ratio of 4000:1). Overall, the directed evolution approach described provides a set of strategies for selecting VPs with improvements in secretion, activity and stability

Details

ISSN :
14708728 and 02646021
Volume :
441
Database :
OpenAIRE
Journal :
Biochemical Journal
Accession number :
edsair.doi.dedup.....199e61e325111e8cec08a00a9b42aac6