Back to Search
Start Over
CERAPP: Collaborative estrogen receptor activity prediction project
- Source :
- Environ. Health Perspect. 124, 1023-1033 (2016), Mansouri, K, Abdelaziz, A, Rybacka, A, Roncaglioni, A, Tropsha, A, Varnek, A, Zakharov, A, Worth, A, Richard, A M, Grulke, C M, Trisciuzzi, D, Fourches, D, Horvath, D, Benfenati, E, Muratov, E, Wedebye, E B, Grisoni, F, Mangiatordi, G F, Incisivo, G M, Hong, H, Ng, H W, Tetko, I V, Balabin, I, Kancherla, J, Shen, J, Burton, J, Nicklaus, M, Cassotti, M, Nikolov, N G, Nicolotti, O, Andersson, P L, Zang, Q, Politi, R, Beger, R D, Todeschini, R, Huang, R, Farag, S, Abildgaard Rosenberg, S, Slavov, S, Hu, X & Judson, R S 2016, ' CERAPP: Collaborative estrogen receptor activity prediction project ', Environmental Health Perspectives, vol. 124, no. 7, pp. 1023-1033 . https://doi.org/10.1289/ehp.1510267, Environmental Health Perspectives, Environmental Health Perspectives, National Institute of Environmental Health Sciences, 2016, 124 (7), pp.1023-1033. ⟨10.1289/ehp.1510267⟩, Environmental health perspectives 124 (2016): 1023–1033. doi:10.1289/ehp.1510267, info:cnr-pdr/source/autori:Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S./titolo:CERAPP: Collaborative Estrogen Receptor Activity Prediction Project/doi:10.1289%2Fehp.1510267/rivista:Environmental health perspectives/anno:2016/pagina_da:1023/pagina_a:1033/intervallo_pagine:1023–1033/volume:124
- Publication Year :
- 2016
- Publisher :
- Us Dept Health Human Sciences Public Health Science, 2016.
-
Abstract
- BACKGROUND: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. OBJECTIVES: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. METHODS: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. RESULTS: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. CONCLUSION: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points. CITATION: Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023-1033; http://dx.doi.org/10.1289/ehp.1510267.
- Subjects :
- 0301 basic medicine
United State
endocrine system
Health, Toxicology and Mutagenesis
Predictive Toxicology
Quantitative Structure-Activity Relationship
010501 environmental sciences
Endocrine Disruptors
Bioinformatics
01 natural sciences
03 medical and health sciences
CHIM/01 - CHIMICA ANALITICA
Toxicity Tests
Endocrine system
Computer Simulation
Environmental policy
Receptor
Estrogen Metabolism
Estrogen receptor activity
Endocrine Disruptor
0105 earth and related environmental sciences
urogenital system
Computer Sciences
Research
Public Health, Environmental and Occupational Health
Kemi
United States
Environmental Policy
030104 developmental biology
Toxicity Test
Datavetenskap (datalogi)
Receptors, Estrogen
Chemical Sciences
hormones, hormone substitutes, and hormone antagonists
[CHIM.CHEM]Chemical Sciences/Cheminformatics
Subjects
Details
- Language :
- English
- ISSN :
- 00916765 and 15529924
- Database :
- OpenAIRE
- Journal :
- Environ. Health Perspect. 124, 1023-1033 (2016), Mansouri, K, Abdelaziz, A, Rybacka, A, Roncaglioni, A, Tropsha, A, Varnek, A, Zakharov, A, Worth, A, Richard, A M, Grulke, C M, Trisciuzzi, D, Fourches, D, Horvath, D, Benfenati, E, Muratov, E, Wedebye, E B, Grisoni, F, Mangiatordi, G F, Incisivo, G M, Hong, H, Ng, H W, Tetko, I V, Balabin, I, Kancherla, J, Shen, J, Burton, J, Nicklaus, M, Cassotti, M, Nikolov, N G, Nicolotti, O, Andersson, P L, Zang, Q, Politi, R, Beger, R D, Todeschini, R, Huang, R, Farag, S, Abildgaard Rosenberg, S, Slavov, S, Hu, X & Judson, R S 2016, ' CERAPP: Collaborative estrogen receptor activity prediction project ', Environmental Health Perspectives, vol. 124, no. 7, pp. 1023-1033 . https://doi.org/10.1289/ehp.1510267, Environmental Health Perspectives, Environmental Health Perspectives, National Institute of Environmental Health Sciences, 2016, 124 (7), pp.1023-1033. ⟨10.1289/ehp.1510267⟩, Environmental health perspectives 124 (2016): 1023–1033. doi:10.1289/ehp.1510267, info:cnr-pdr/source/autori:Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S./titolo:CERAPP: Collaborative Estrogen Receptor Activity Prediction Project/doi:10.1289%2Fehp.1510267/rivista:Environmental health perspectives/anno:2016/pagina_da:1023/pagina_a:1033/intervallo_pagine:1023–1033/volume:124
- Accession number :
- edsair.doi.dedup.....19ca2fcc0857ff9262805a90c4007e7f
- Full Text :
- https://doi.org/10.1289/ehp.1510267