Sorry, I don't understand your search. ×
Back to Search Start Over

Morita context and generalized (α, β)−derivations

Authors :
Nadeem ur Rehman
Radwan Mohammed AL-Omary
Mohammed M. Al-Shomrani
Source :
Boletim da Sociedade Paranaense de Matemática, Vol 31, Iss 1, Pp 153-166 (2013)
Publication Year :
2011
Publisher :
Sociedade Paranaense de Matematica, 2011.

Abstract

Let $R$ and $S$ be rings of a semi-projective Morita context, and $\alpha, \beta$ be automorphisms of $R$. An additive mapping $F$: $R\to R$ is called a generalized $(\alpha,\beta)$-derivation on $R$ if there exists an $(\alpha,\beta)$-derivation $d$: $R\to R$ such that $F(xy)=F(x)\alpha(y)+\beta(x)d(y)$ holds for all $x,y \in R$. For any $x,y \in R$, set $[x, y]_{\alpha, \beta} = x \alpha(y) - \beta(y) x$ and $(x \circ y)_{\alpha, \beta} = x \alpha(y) + \beta(y) x$. In the present paper, we shall show that if the ring $S$ is reduced then it is a commutative, in a compatible way with the ring $R$ . Also, we obtain some results on bialgebras via Cauchy modules.

Details

ISSN :
21751188 and 00378712
Volume :
31
Database :
OpenAIRE
Journal :
Boletim da Sociedade Paranaense de Matemática
Accession number :
edsair.doi.dedup.....19cca1012c86d41844c2e3616561d767