Back to Search Start Over

Penultimate Proline in Neuropeptides

Authors :
Predrag Radivojac
Matthew S. Glover
Earl P. Bellinger
David E. Clemmer
Source :
Analytical Chemistry. 87:8466-8472
Publication Year :
2015
Publisher :
American Chemical Society (ACS), 2015.

Abstract

A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

Details

ISSN :
15206882 and 00032700
Volume :
87
Database :
OpenAIRE
Journal :
Analytical Chemistry
Accession number :
edsair.doi.dedup.....1a98975233fc98b0f942f208f393f87b
Full Text :
https://doi.org/10.1021/acs.analchem.5b01889