Back to Search
Start Over
Coupling of a cardiovascular model with a thermoregulation model to predict human blood pressure under unsteady environmental conditions
- Source :
- E3S Web of Conferences, Vol 111, p 02062 (2019)
- Publication Year :
- 2019
- Publisher :
- EDP Sciences, 2019.
-
Abstract
- We coupled a cardiovascular model with a thermoregulation model to predict human blood pressure in unsteady environmental conditions. Our cardiovascular model is a lumped parameter model and consists of 42 segments, which include the entire artery and vein system, divided into 18 segments; the heart, divided into 4 segments; and the pulmonary artery and vein. The vessel parameters were adjusted on the basis of local body blood volume and flow of the thermoregulation model in a thermoneutral environment. Blood pressure under unsteady environmental conditions is predicted by changing the heart rate and vessel resistance of the cardiovascular model which is controlled by blood flow that the thermoregulation model predicts. It is possible to predict the increase in blood pressure under cold environmental conditions and the increase in cardiac output under hot environmental conditions and when bathing. The model was validated by simulating bathing experiments. As the result, the model predicted the peak blood pressure later than the experimental data in a cold environment. To improve the accuracy of the model, it is necessary to consider a method for controlling the heart rate, vessel resistance, and gravity effects after a change in posture.
- Subjects :
- lcsh:GE1-350
Cardiac output
Flow (psychology)
0211 other engineering and technologies
Blood volume
02 engineering and technology
Blood flow
Mechanics
010501 environmental sciences
Thermoregulation
01 natural sciences
Blood pressure
medicine.artery
Heart rate
Pulmonary artery
medicine
Environmental science
021108 energy
lcsh:Environmental sciences
0105 earth and related environmental sciences
Subjects
Details
- Language :
- English
- ISSN :
- 22671242
- Volume :
- 111
- Database :
- OpenAIRE
- Journal :
- E3S Web of Conferences
- Accession number :
- edsair.doi.dedup.....1a9ef1d0b6058cbd71ccd3b22a90525f