Back to Search Start Over

Generative modeling for label-free glomerular modeling and classification

Authors :
Kuang-Yu Jen
Wen Dong
Brendon Lutnick
Pinaki Sarder
Brandon Ginley
Tomaszewski, John E
Ward, Aaron D
Source :
Medical Imaging: Digital Pathology, Proc SPIE Int Soc Opt Eng
Publication Year :
2020
Publisher :
SPIE, 2020.

Abstract

Generative modeling using GANs has gained traction in machine learning literature, as training does not require labeled datasets. This is perfect for applications in biological datasets, where large labeled datasets are often difficult and expensive to acquire. However, generative models offer no easy way to encode real images into feature-sets, something that is desirable for network explainability and may yield potentially informative image features. For this reason, we test a VAE-GAN architecture for label-free modeling of glomerular structural features. We show that this network can generate realistic looking synthetic images, and be used to interpolate between images. To prove the biological relevance of the network encodings, we classify small-labeled sets of encoded glomeruli by biopsy Tervaert class and for the presence of sclerosis, obtaining a Cohen’s kappa values of 0.87 and 0.78 respectfully.

Details

Database :
OpenAIRE
Journal :
Medical Imaging 2020: Digital Pathology
Accession number :
edsair.doi.dedup.....1aa9647cbc828dc84313b1c817d493f3