Back to Search Start Over

Photofabrication of Highly Transparent Platinum Counter Electrodes at Ambient Temperature for Bifacial Dye Sensitized Solar Cells

Authors :
Mohammed A. Gondal
Talal F. Qahtan
Jwaher M. AlGhamdi
Idris K. Popoola
Source :
Scientific Reports, Vol 8, Iss 1, Pp 1-12 (2018), Scientific Reports
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

Platinum (Pt) counter electrodes (CEs) have consistently shown excellent electrocatalytic performance and holds the record of the highest power conversion efficiency (PCE) for dye-sensitized solar cells (DSSCs). However, its use for large-scale production is limited either by high temperature required for thermal decomposition of its precursor or by wastage of the material leading to high cost or sophisticated equipment. Here, we report a novel photofabrication technique to fabricate highly transparent platinum counter electrodes by ultraviolet (UV) irradiation of platinic acid (H2PtCl6.6H2O) on rigid fluorine-doped tin oxide (FTO) and flexible indium-doped tin oxide (ITO) on polyethylene terephthalate (PET) substrates. The photofabrication technique is a facile and versatile method for the fabrication of Pt CEs for dye sensitized solar cells (DSSCs). The photofabricated Pt CEs were used to fabricate bifacial DSSCs with power conversion efficiencies (PCEs) attaining 7.29% for front illumination and 5.85% for rear illumination. The highest percentage ratio of the rear illumination efficiency to the front illumination efficiency (ηR) of 85.92% was recorded while the least ηR is 77.91%.

Details

ISSN :
20452322
Volume :
8
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....1ab751647a4f16c12279af8aab630bce
Full Text :
https://doi.org/10.1038/s41598-018-31040-1