Back to Search Start Over

Performance evaluation of global hydrological models in six large Pan-Arctic watersheds

Authors :
Gädeke, Anne
Krysanova, Valentina
Aryal, Aashutosh
Chang, Jinfeng
Grillakis, Manolis
Hanasaki, Naota
Koutroulis, Aristeidis
Pokhrel, Yadu
Satoh, Yusuke
Schaphoff, Sibyll
Müller Schmied, Hannes
Stacke, Tobias
Tang, Qiuhong
Wada, Yoshihide
Thonicke, Kirsten
Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
Lab of Geophysical-Remote Sensing & Archaeoenvironment, Institute for Mediterranean Studies, Foundation for Research & Technology Hellas, Rethimnon, Greece
National Institute for Environmental Studies, Tsukuba, Japan
School of Environmental Engineering, Technical University of Crete, Chania, Greece
Department of Civil and Environmental Engineering, Michigan State University, East Lansing, USA
Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F) Frankfurt, Frankfurt am Main, Germany
Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht, Germany
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Potsdam Institute for Climate Impact Research (PIK)
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Technical University of Crete [Chania]
National Institute for Environmental Studies (NIES)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
Climatic Change, Climatic Change, Springer Verlag, 2020, 163 (3), pp.1329-1351. ⟨10.1007/s10584-020-02892-2⟩, Gädeke, A.; Krysanova, V.; Aryal, A.; Chang, J.; Grillakis, M.; Hanasaki, N.; Koutroulis, A.; Pokhrel, Y.; Satoh, Y.; Schaphoff, S.; Müller Schmied, H.; Stacke, T.; Tang, Q.; Wada, Y.; Thonicke, K.: Performance evaluation of global hydrological models in six large Pan-Arctic watersheds. In: Climatic Change. Vol. 163 (2020) 1329-1351. (DOI: /10.1007/s10584-020-02892-2), Climatic Change, 2020, 163 (3), pp.1329-1351. ⟨10.1007/s10584-020-02892-2⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Global Water Models (GWMs), which include Global Hydrological, Land Surface, and Dynamic Global Vegetation Models, present valuable tools for quantifying climate change impacts on hydrological processes in the data scarce high latitudes. Here we performed a systematic model performance evaluation in six major Pan-Arctic watersheds for different hydrological indicators (monthly and seasonal discharge, extremes, trends (or lack of), and snow water equivalent (SWE)) via a novel Aggregated Performance Index (API) that is based on commonly used statistical evaluation metrics. The machine learning Boruta feature selection algorithm was used to evaluate the explanatory power of the API attributes. Our results show that the majority of the nine GWMs included in the study exhibit considerable difficulties in realistically representing Pan-Arctic hydrological processes. Average APIdischarge (monthly and seasonal discharge) over nine GWMs is > 50% only in the Kolyma basin (55%), as low as 30% in the Yukon basin and averaged over all watersheds APIdischarge is 43%. WATERGAP2 and MATSIRO present the highest (APIdischarge > 55%) while ORCHIDEE and JULES-W1 the lowest (APIdischarge ≤ 25%) performing GWMs over all watersheds. For the high and low flows, average APIextreme is 35% and 26%, respectively, and over six GWMs APISWE is 57%. The Boruta algorithm suggests that using different observation-based climate data sets does not influence the total score of the APIs in all watersheds. Ultimately, only satisfactory to good performing GWMs that effectively represent cold-region hydrological processes (including snow-related processes, permafrost) should be included in multi-model climate change impact assessments in Pan-Arctic watersheds.<br />Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347

Details

Language :
English
ISSN :
01650009 and 15731480
Database :
OpenAIRE
Journal :
Climatic Change, Climatic Change, Springer Verlag, 2020, 163 (3), pp.1329-1351. ⟨10.1007/s10584-020-02892-2⟩, Gädeke, A.; Krysanova, V.; Aryal, A.; Chang, J.; Grillakis, M.; Hanasaki, N.; Koutroulis, A.; Pokhrel, Y.; Satoh, Y.; Schaphoff, S.; Müller Schmied, H.; Stacke, T.; Tang, Q.; Wada, Y.; Thonicke, K.: Performance evaluation of global hydrological models in six large Pan-Arctic watersheds. In: Climatic Change. Vol. 163 (2020) 1329-1351. (DOI: /10.1007/s10584-020-02892-2), Climatic Change, 2020, 163 (3), pp.1329-1351. ⟨10.1007/s10584-020-02892-2⟩
Accession number :
edsair.doi.dedup.....1acd66157f54321066c8c161a840de80