Back to Search Start Over

Effect of pulse phase duration on forward masking and spread of excitation in cochlear implant listeners

Authors :
John J. Galvin
Zhen Zhu
Lixue Dong
Ning Zhou
Source :
PLoS ONE, Vol 15, Iss 7, p e0236179 (2020), PLoS ONE
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

Previous cochlear implant (CI) research has shown that at a pulse train with a long pulse phase duration (PPD) requires less current but greater charge to obtain the same loudness as a pulse train with a short PPD. This might result in different excitation patterns between long and short PPDs. At equal loudness, long PPDs might produce greater masking due to greater charge. However, because they require less current, long PPDs may produce a smaller spatial spread of excitation (SOE) compared to short PPDs by evoking a greater neural firing probability within the relatively small current field. To investigate the effects of PPD on excitation patterns, overall masking and SOE were compared for equally loud stimuli with short or long PPD in 10 adult CI ears. Forward masking patterns were measured at relatively soft, medium, and loud presentation levels. Threshold shifts were calculated in terms of percent dynamic range (DR) of the probe. The area under the curve (AUC) of the masking functions was significantly larger for the long PPD than for the short PPD masker. The difference in AUC was proportional to the difference in charge between the short and long PPD maskers. To estimate SOE, the masking patterns were first normalized to the peak masking, and then AUC was calculated. SOE was significantly larger for the short PPD than for the long PPD masker. Thus, at equal loudness, long PPDs produced greater overall masking (possibly due to greater charge) but less SOE (possibly due to less current spread) than did short PPDs. The effect of the interaction between masking and SOE by long PPD stimulation remains to be tested.

Details

ISSN :
19326203
Volume :
15
Database :
OpenAIRE
Journal :
PLOS ONE
Accession number :
edsair.doi.dedup.....1afb0c329a955cef063e79116e6c2984
Full Text :
https://doi.org/10.1371/journal.pone.0236179