Back to Search Start Over

Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix

Authors :
Labahn, George
Neiger, Vincent
Vu, Thi Xuan
Zhou, Wei
Neiger, Vincent
Source :
Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation.
Publication Year :
2022
Publisher :
ACM, 2022.

Abstract

Consider a matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ of univariate polynomials over a field $\mathbb{K}$. We study the problem of computing the column rank profile of $\mathbf{F}$. To this end we first give an algorithm which improves the minimal kernel basis algorithm of Zhou, Labahn, and Storjohann (Proceedings ISSAC 2012). We then provide a second algorithm which computes the column rank profile of $\mathbf{F}$ with a rank-sensitive complexity of $O\tilde{~}(r^{\omega-2} n (m+D))$ operations in $\mathbb{K}$. Here, $D$ is the sum of row degrees of $\mathbf{F}$, $\omega$ is the exponent of matrix multiplication, and $O\tilde{~}(\cdot)$ hides logarithmic factors.<br />Comment: 10 pages, 2 algorithms, 1 figure

Details

Database :
OpenAIRE
Journal :
Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation
Accession number :
edsair.doi.dedup.....1b061419c1419179a7486d929149621d
Full Text :
https://doi.org/10.1145/3476446.3535495