Back to Search
Start Over
Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix
- Source :
- Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation.
- Publication Year :
- 2022
- Publisher :
- ACM, 2022.
-
Abstract
- Consider a matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ of univariate polynomials over a field $\mathbb{K}$. We study the problem of computing the column rank profile of $\mathbf{F}$. To this end we first give an algorithm which improves the minimal kernel basis algorithm of Zhou, Labahn, and Storjohann (Proceedings ISSAC 2012). We then provide a second algorithm which computes the column rank profile of $\mathbf{F}$ with a rank-sensitive complexity of $O\tilde{~}(r^{\omega-2} n (m+D))$ operations in $\mathbb{K}$. Here, $D$ is the sum of row degrees of $\mathbf{F}$, $\omega$ is the exponent of matrix multiplication, and $O\tilde{~}(\cdot)$ hides logarithmic factors.<br />Comment: 10 pages, 2 algorithms, 1 figure
- Subjects :
- Computer Science - Symbolic Computation
FOS: Computer and information sciences
Rings and Algebras (math.RA)
[INFO.INFO-SC] Computer Science [cs]/Symbolic Computation [cs.SC]
FOS: Mathematics
[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]
Mathematics - Rings and Algebras
Polynomial matrix
kernel basis
Symbolic Computation (cs.SC)
complexity
rank profile
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation
- Accession number :
- edsair.doi.dedup.....1b061419c1419179a7486d929149621d
- Full Text :
- https://doi.org/10.1145/3476446.3535495