Back to Search Start Over

Entropy Maximization and the Spatial Distribution of Species

Authors :
Rampal S. Etienne
Bart Haegeman
Water Resource Modeling (MERE)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)
Centre for Ecological and Evolutionary studies [Groningen]
University of Groningen [Groningen]
Etienne group
Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA)
Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Institut National de Recherche en Informatique et en Automatique (Inria)
University of Groningen
Source :
The American Naturalist, The American Naturalist, The American Society of Naturalists, 2010, 175, pp.E74-E90. ⟨10.1086/650718⟩, The American Naturalist, The American Society of Naturalists, 2010, 175, pp.E74-E90, American Naturalist, 175(4), E74-E90. University of Chicago Press, American Naturalist, American Naturalist, University of Chicago Press, 2010, 175 (4), pp.E74-E90. ⟨10.1086/650718⟩, The American Naturalist, 2010, 175, pp.E74-E90. ⟨10.1086/650718⟩
Publication Year :
2010
Publisher :
University of Chicago Press, 2010.

Abstract

International audience; Entropy maximization (EM, also known as MaxEnt) is a general inference procedure that originated in statistical mechanics. It has been applied recently to predict ecological patterns, such as species abundance distributions and species-area relationships. It is well known in physics that the EM result strongly depends on how elementary configurations are described. Here we argue that the same issue is also of crucial importance for EM applications in ecology. To illustrate this, we focus on the EM prediction of species-level spatial abundance distributions. We show that the EM outcome depends on (1) the choice of configuration set, (2) the way constraints are imposed, and (3) the scale on which the EM procedure is applied. By varying these choices in the EM model, we obtain a large range of EM predictions. Interestingly, they correspond to spatial abundance distributions that have been derived previously from mechanistic models. We argue that the appropriate choice of the EM model assumptions is nontrivial and can be determined only by comparison with empirical data.

Details

ISSN :
15375323 and 00030147
Volume :
175
Database :
OpenAIRE
Journal :
The American Naturalist
Accession number :
edsair.doi.dedup.....1b111db94ba2891dc5260c2986ee1e58
Full Text :
https://doi.org/10.1086/650718