Back to Search
Start Over
Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
- Source :
- Open Mathematics, Vol 11, Iss 5, Pp 931-939 (2013)
- Publication Year :
- 2013
- Publisher :
- De Gruyter, 2013.
-
Abstract
- There is a circle of problems concerning the exponential generating function of harmonic numbers. The main results come from Cvijovic, Dattoli, Gosper and Srivastava. In this paper, we extend some of them. Namely, we give the exponential generating function of hyperharmonic numbers indexed by arithmetic progressions; in the sum several combinatorial numbers (like Stirling and Bell numbers) and the hypergeometric function appear.
- Subjects :
- r-stirling numbers
General Mathematics
Stirling numbers of the first kind
Generating function
bell numbers
Stirling numbers of the second kind
hypergeometric function
stirling numbers
exponential integral
harmonic numbers
dobinski formula
QA1-939
Stirling number
hyperharmonic numbers
Harmonic number
digamma function
Arithmetic
05a15
Bernoulli number
Mathematics
Pronic number
Primorial
Subjects
Details
- Language :
- English
- ISSN :
- 23915455
- Volume :
- 11
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Open Mathematics
- Accession number :
- edsair.doi.dedup.....1b1f4bbdd7be2a4a8f5ed0c7ffebede0