Back to Search Start Over

Relationship between Serum Adiponectin Concentration and Intramyocellular Lipid Stores in Humans

Authors :
Fritz Schick
Michael Haap
Stephan Jacob
HU Häring
Dominik Dahl
Andreas Fritsche
Oliver Bachmann
Claus Thamer
BM Wietek
Juergen Machann
Otto Tschritter
Michael Stumvoll
Source :
Hormone and Metabolic Research. 34:646-649
Publication Year :
2002
Publisher :
Georg Thieme Verlag KG, 2002.

Abstract

The recently identified adipocytokine adiponectin has been shown to improve insulin action and decrease triglyceride content in skeletal muscle (by stimulating lipid oxidation) in mice. In the present study, we tested the hypothesis that high serum concentrations of adiponectin are associated with lower intramyocellular (IMCL) fat content by promoting lipid oxidation in humans. IMCL-content in predominantly non-oxidative tibialis anterior muscle and oxidative soleus was determined by proton magnetic resonance spectroscopy in a cross- sectional study involving 63 healthy volunteers. In a second set of experiments, changes in IMCL in both muscles were measured after a three days dietary lipid challenge (n = 18) and after intravenous lipid challenge (n = 12) with suppressed lipid oxidation under hyperinsulinemia. Adiponectin serum concentrations were found to be negatively correlated with IMCL in the oxidative soleus muscle (IMCL [sol]) (r = - 0.46, p < 0.001) independent of measures of obesity, but not with IMCL in the non-oxidative tibialis anterior muscle (IMCL [tib]) (p = 0.40). Adiponectin serum concentrations were negatively correlated with the observed increase in IMCL load after dietary lipid challenge in the tibialis (r = 0.53, p = 0.03) but not in the soleus muscle. During suppression of lipid oxidation by hyperinsulinemia, no effect of adiponectin on IMCL was observed in either soleus or tibialis muscle. Overall, the presented findings are consistent with the hypothesis that adiponectin promotes lipid oxidation in humans resulting in lower intracellular lipid content in human muscle. These results are consistent with animal data, where adiponectin could be shown to enhance lipid oxidation and reduce muscle triglycerides.

Details

ISSN :
14394286 and 00185043
Volume :
34
Database :
OpenAIRE
Journal :
Hormone and Metabolic Research
Accession number :
edsair.doi.dedup.....1b38a58c732df6a603d4b1044d63651e
Full Text :
https://doi.org/10.1055/s-2002-38260