Back to Search Start Over

Hybridation of Bayesian networks and evolutionary algorithms for multi-objective optimization in an integrated product design and project management context

Authors :
Claude Baron
Paul Pitiot
Laurent Geneste
Thierry Coudert
Laboratoire Génie de Production (LGP)
Ecole Nationale d'Ingénieurs de Tarbes (ENIT)
Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université de Toulouse (UT)
Centre Génie Industriel (CGI)
IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Laboratoire Toulousain de Technologie et d'Ingénierie des Systèmes (LATTIS)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-IUT Toulouse 2 Blagnac
Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)
Ecole Nationale d'Ingénieurs de Tarbes
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-IUT Toulouse 2 Blagnac
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse - Jean Jaurès (UT2J)
Ecole nationale supérieure des Mines d'Albi-Carmaux - IMT Mines Albi (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Source :
Engineering Applications of Artificial Intelligence, Engineering Applications of Artificial Intelligence, 2010, vol. 23, pp. 830-843. ⟨10.1016/j.engappai.2010.01.019⟩, Engineering Applications of Artificial Intelligence, Elsevier, 2010, vol. 23, pp. 830-843. ⟨10.1016/j.engappai.2010.01.019⟩
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

International audience; A better integration of preliminary product design and project management processes at early steps of system design is nowadays a key industrial issue. Therefore, the aim is to make firms evolve from classical sequential approach (first product design the project design and management) to new integrated approaches. In this paper, a model for integrated product/project optimization is first proposed which allows taking into account simultaneously decisions coming from the product and project managers. However, the resulting model has an important underlying complexity, and a multi-objective optimization technique is required to provide managers with appropriate scenarios in a reasonable amount of time. The proposed approach is based on an original evolutionary algorithm called evolutionary algorithm oriented by knowledge (EAOK). This algorithm is based on the interaction between an adapted evolutionary algorithm and a model of knowledge (MoK) used for giving relevant orientations during the search process. The evolutionary operators of the EA are modified in order to take into account these orientations. The MoK is based on the Bayesian Network formalism and is built both from expert knowledge and from individuals generated by the EA. A learning process permits to update probabilities of the BN from a set of selected individuals. At each cycle of the EA, probabilities contained into the MoK are used to give some bias to the new evolutionary operators. This method ensures both a faster and effective optimization, but it also provides the decision maker with a graphic and interactive model of knowledge linked to the studied project. An experimental platform has been developed to experiment the algorithm and a large campaign of tests permits to compare different strategies as well as the benefits of this novel approach in comparison with a classical EA.

Details

Language :
English
ISSN :
09521976
Database :
OpenAIRE
Journal :
Engineering Applications of Artificial Intelligence, Engineering Applications of Artificial Intelligence, 2010, vol. 23, pp. 830-843. ⟨10.1016/j.engappai.2010.01.019⟩, Engineering Applications of Artificial Intelligence, Elsevier, 2010, vol. 23, pp. 830-843. ⟨10.1016/j.engappai.2010.01.019⟩
Accession number :
edsair.doi.dedup.....1b6bc6a6995e2dbe69c0be516b13fe0b