Back to Search Start Over

Automatic Detection of Subsolid Pulmonary Nodules in Thoracic Computed Tomography Images

Authors :
Colin Jacobs
Thorsten Twellmann
Mathias Prokop
Harry J. de Koning
Matthijs Oudkerk
Cornelia M. Schaefer-Prokop
Eva M. van Rikxoort
Bram van Ginneken
Jan-Martin Kuhnigk
Ernst T. Scholten
Pim A. de Jong
Public Health
Rehabilitation Medicine
Publica
Source :
Medical Image Analysis, 18, 374-384, Medical image analysis, 18(2), 374-384. ELSEVIER SCIENCE BV, Medical Image Analysis, 18, 2, pp. 374-384, Medical Image Analysis, 18(2), 374-384. Elsevier
Publication Year :
2014

Abstract

Contains fulltext : 136826.pdf (Publisher’s version ) (Open Access) Subsolid pulmonary nodules occur less often than solid pulmonary nodules, but show a much higher malignancy rate. Therefore, accurate detection of this type of pulmonary nodules is crucial. In this work, a computer-aided detection (CAD) system for subsolid nodules in computed tomography images is presented and evaluated on a large data set from a multi-center lung cancer screening trial. The paper describes the different components of the CAD system and presents experiments to optimize the performance of the proposed CAD system. A rich set of 128 features is defined for subsolid nodule candidates. In addition to previously used intensity, shape and texture features, a novel set of context features is introduced. Experiments show that these features significantly improve the classification performance. Optimization and training of the CAD system is performed on a large training set from one site of a lung cancer screening trial. Performance analysis on an independent test from another site of the trial shows that the proposed system reaches a sensitivity of 80% at an average of only 1.0 false positive detections per scan. A retrospective analysis of the output of the CAD system by an experienced thoracic radiologist shows that the CAD system is able to find subsolid nodules which were not contained in the screening database.

Details

ISSN :
13618415
Database :
OpenAIRE
Journal :
Medical Image Analysis, 18, 374-384, Medical image analysis, 18(2), 374-384. ELSEVIER SCIENCE BV, Medical Image Analysis, 18, 2, pp. 374-384, Medical Image Analysis, 18(2), 374-384. Elsevier
Accession number :
edsair.doi.dedup.....1b87de64e2e843c23cf8d59bfc2625f1