Back to Search Start Over

Data from Novel Chemical Enhancers of Heat Shock Increase Thermal Radiosensitization through a Mitotic Catastrophe Pathway

Authors :
Michael L. Freeman
Joseph L. Roti Roti
James R. Lepock
Peter A. Crooks
Michael J. Borrelli
Robert G. Bristow
Ryuji Higashikubo
Nobuo Horikoshi
Jamil Sawani
Andrei Laszlo
Soumya Sasi
Venkatraj Muthusamy
Vijayakumar N. Sonar
Konjeti R. Sekhar
Publication Year :
2023
Publisher :
American Association for Cancer Research (AACR), 2023.

Abstract

Radiation therapy combined with adjuvant hyperthermia has the potential to provide outstanding local-regional control for refractory disease. However, achieving therapeutic thermal dose can be problematic. In the current investigation, we used a chemistry-driven approach with the goal of designing and synthesizing novel small molecules that could function as thermal radiosensitizers. (Z)-(±)-2-(1-Benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol was identified as a compound that could lower the threshold for Hsf1 activation and thermal sensitivity. Enhanced thermal sensitivity was associated with significant thermal radiosensitization. We established the structural requirements for activity: the presence of an N-benzenesulfonylindole or N-benzylindole moiety linked at the indolic 3-position to a 2-(1-azabicyclo[2.2.2]octan-3-ol) or 2-(1-azabicyclo[2.2.2]octan-3-one) moiety. These small molecules functioned by exploiting the underlying biophysical events responsible for thermal sensitization. Thermal radiosensitization was characterized biochemically and found to include loss of mitochondrial membrane potential, followed by mitotic catastrophe. These studies identified a novel series of small molecules that represent a promising tool for the treatment of recurrent tumors by ionizing radiation. [Cancer Res 2007;67(2):695–701]

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....1baa1efcc3556d497da7d07a64c144ba
Full Text :
https://doi.org/10.1158/0008-5472.c.6495111