Back to Search Start Over

EPIKOL, a chromatin-focused CRISPR/Cas9-based screening platform, to identify cancer-specific epigenetic vulnerabilities

Authors :
Ozlem Yedier-Bayram
Bengul Gokbayrak
Alisan Kayabolen
Ali Cenk Aksu
Ayse Derya Cavga
Ahmet Cingöz
Ezgi Yagmur Kala
Goktug Karabiyik
Rauf Günsay
Beril Esin
Tunc Morova
Fırat Uyulur
Hamzah Syed
Martin Philpott
Adam P. Cribbs
Sonia H. Y. Kung
Nathan A. Lack
Tamer T. Onder
Tugba Bagci-Onder
Yedier Bayram, Özlem
Gökbayrak, Bengül
Kayabölen, Alişan
Aksu, Ali Cenk
Cavga, Ayse Derya
Cingöz, Ahmet
Kala, Ezgi Yağmur
Karabıyık, Göktuğ
Günsay, Rauf
Esin, Beril
Morova, Tunç
Uyulur, Fırat
Önder, Tuğba Bağcı (ORCID 0000-0003-3646-2613 & YÖK ID 184359)
Syed, Hamzah (ORCID 0000-0001-6981-6962 & YÖK ID 318138)
Lack, Nathan Alan (ORCID 0000-0001-7399-5844 & YÖK ID 120842)
Önder, Tamer Tevfik (ORCID 0000-0002-2372-9158 & YÖK ID 42946)
Philpott, Martin
Cribbs, Adam P.
Kung, Sonia H.Y
Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
School of Medicine
Graduate School of Health Sciences
Source :
Cell Death and Disease
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Dysregulation of the epigenome due to alterations in chromatin modifier proteins commonly contribute to malignant transformation. To interrogate the roles of epigenetic modifiers in cancer cells, we generated an epigenome-wide CRISPR-Cas9 knockout library (EPIKOL) that targets a wide-range of epigenetic modifiers and their cofactors. We conducted eight screens in two different cancer types and showed that EPIKOL performs with high efficiency in terms of sgRNA distribution and depletion of essential genes. We discovered novel epigenetic modifiers that regulate triple-negative breast cancer (TNBC) and prostate cancer cell fitness. We confirmed the growth-regulatory functions of individual candidates, including SS18L2 and members of the NSL complex (KANSL2, KANSL3, KAT8) in TNBC cells. Overall, we show that EPIKOL, a focused sgRNA library targeting similar to 800 genes, can reveal epigenetic modifiers that are essential for cancer cell fitness under in vitro and in vivo conditions and enable the identification of novel anti-cancer targets. Due to its comprehensive epigenome-wide targets and relatively high number of sgRNAs per gene, EPIKOL will facilitate studies examining functional roles of epigenetic modifiers in a wide range of contexts, such as screens in primary cells, patient-derived xenografts as well as in vivo models.<br />Scientific and Technological Research Council of Turkey (TÜBİTAK); pLenti-CMVBlast-PIP-FUCCI

Details

ISSN :
20414889
Volume :
13
Database :
OpenAIRE
Journal :
Cell Death & Disease
Accession number :
edsair.doi.dedup.....1be37b91c79ac7fee6375b8919fbff9f
Full Text :
https://doi.org/10.1038/s41419-022-05146-4