Back to Search
Start Over
Understanding the electronic structure of 4d metal complexes: from molecular spinors to L-edge spectra of a di-Ru catalyst
- Source :
- Journal of the American Chemical Society
- Publication Year :
- 2011
-
Abstract
- L-2,L-3-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[(Ru2O)-O-III(H2O)(2)(bpy)(4)](4+) water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH3)(6)](3+) model complex show considerably different splitting of the Ru L-2,L-3 absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L-2,L-3-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L-2,L-3-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH3)(6)](3+) model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals. (Less)
- Subjects :
- X-ray absorption spectroscopy
Absorption spectroscopy
Dimer
Bridging ligand
02 engineering and technology
General Chemistry
Electronic structure
010402 general chemistry
021001 nanoscience & nanotechnology
Photochemistry
01 natural sciences
Biochemistry
Catalysis
0104 chemical sciences
Crystallography
chemistry.chemical_compound
Colloid and Surface Chemistry
Absorption edge
Transition metal
chemistry
0210 nano-technology
Spectroscopy
Subjects
Details
- ISSN :
- 15205126
- Volume :
- 133
- Issue :
- 39
- Database :
- OpenAIRE
- Journal :
- Journal of the American Chemical Society
- Accession number :
- edsair.doi.dedup.....1c147f4ec98dfd3e8314d7bd53c4f6fc