Back to Search Start Over

PENDANTSS: PEnalized Norm-ratios Disentangling Additive Noise, Trend and Sparse Spikes

Authors :
Paul Zheng
Emilie Chouzenoux
Laurent Duval
Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH)
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
IFP Energies nouvelles (IFPEN)
European Project: ERC-2019-STG-850925,MAJORIS(2020)
Zheng, Paul
ERC-2019-STG-850925 - MAJORIS - ERC-2019-STG-850925 - INCOMING
Source :
IEEE Signal Processing Letters, IEEE Signal Processing Letters, 2023, 30, pp.215-219. ⟨10.1109/LSP.2023.3251891/mm1⟩
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; Denoising, detrending, deconvolution: usual restoration tasks, traditionally decoupled. Coupled formulations entail complex ill-posed inverse problems. We propose PENDANTSS for joint trend removal and blind deconvolution of sparse peak-like signals. It blends a parsimonious prior with the hypothesis that smooth trend and noise can somewhat be separated by low-pass filtering. We combine the generalized quasi-norm ratio SOOT/SPOQ sparse penalties $\ell_p/\ell_q$ with the BEADS ternary assisted source separation algorithm. This results in a both convergent and efficient tool, with a novel Trust-Region block alternating variable metric forward-backward approach. It outperforms comparable methods, when applied to typically peaked analytical chemistry signals. Reproducible code is provided.

Details

Language :
English
ISSN :
10709908
Database :
OpenAIRE
Journal :
IEEE Signal Processing Letters, IEEE Signal Processing Letters, 2023, 30, pp.215-219. ⟨10.1109/LSP.2023.3251891/mm1⟩
Accession number :
edsair.doi.dedup.....1c4aa31afc452eccb41720382495a230
Full Text :
https://doi.org/10.1109/LSP.2023.3251891/mm1⟩