Back to Search
Start Over
Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment
- Source :
- Nature. 432:910-913
- Publication Year :
- 2004
- Publisher :
- Springer Science and Business Media LLC, 2004.
-
Abstract
- Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.
- Subjects :
- Genetics
Whole genome sequencing
Multidisciplinary
biology
Oceans and Seas
Ruegeria
Molecular Sequence Data
fungi
Marine Biology
Bacterioplankton
Plankton
Roseobacter
biology.organism_classification
Adaptation, Physiological
Genome
Genes, Bacterial
RNA, Ribosomal, 16S
Seawater
Carrier Proteins
Silicibacter pomeroyi
Gene
Genome, Bacterial
Phylogeny
Subjects
Details
- ISSN :
- 14764687 and 00280836
- Volume :
- 432
- Database :
- OpenAIRE
- Journal :
- Nature
- Accession number :
- edsair.doi.dedup.....1c7cfa2d7b415d4a343555ec7347beec
- Full Text :
- https://doi.org/10.1038/nature03170