Back to Search Start Over

lncRNA SNHG1 cooperated with miR-497/miR-195-5p to modify epithelial-mesenchymal transition underlying colorectal cancer exacerbation

Authors :
Jian Zhao
Rui Zhang
Jinghui Bai
Jian Xu
Source :
Journal of cellular physiology. 235(2)
Publication Year :
2019

Abstract

Our study was intended to provide evidence for whether long noncoding RNA (lncRNA) SNHG1 would accelerate the epithelial-mesenchymal transition (EMT) course intrinsic in colorectal cancer (CRC) by sponging downstream miR-497-5p and miR-195-5p. We altogether collected 338 pairs of CRC and noncancerous tissues, and meanwhile purchased five CRC cell lines (i.e., SW480, HCT116, Lovo, CaCO-2, and HT29) and human embryo intestinal mucosal tissue-sourced cell line (i.e., CCC-HIE-2). The CRC cells as mentioned above were appraised regarding their potencies in proliferation, migration, and invasion, after being transfected with pcDNA3.1-SNHG1, si-SNHG1, miR-195-5p mimic/inhibitor, and miR-497-5p mimic/inhibitor. Eventually, we depended on reverse transcription-polymerase chain reaction to assess SNHG1, miR-497-5p, and miR-195-5p expressions, and the protein levels of EMT-specific molecules were determined on the strength of western blotting. It seemed that there was a high potential for highly expressed SNHG1 and lowly expressed miR-497/miR-195 to symbolize CRC patients' unfavorable prognosis (p < .05). Concurrently, CRC cells were detected with higher SNHG1 expression and lower miR-497/miR-195 expression than CCC-HIE-2 cells (p < .05). In addition, the EMT process of CRC cells was facilitated markedly against the contexts of overexpressed SNHG1 and underexpressed miR-497-5p/miR-195-5p. Intriguingly, the strength of miR-195-5p collaborating with miR-497-5p in affecting the activity of CRC cells seemed to overweigh that of miR-497/miR-195-5p alone. Besides, both miR-195-5p and miR-497-5p were subjected to in vivo and in vitro modification of SNHG1 (p < .05). Conclusively, application of lncRNA SNHG1 for treating CRC might be promising, given its dual modulation of miR-497 and miR-195 underlying CRC pathogenesis.

Details

ISSN :
10974652
Volume :
235
Issue :
2
Database :
OpenAIRE
Journal :
Journal of cellular physiology
Accession number :
edsair.doi.dedup.....1c9326dd65d3fae14b595dfc4dc2ad19