Back to Search
Start Over
Sampling the Conformational Energy Landscape of a Hyperthermophilic Protein by Engineering Key Substitutions
- Source :
- Molecular Biology and Evolution, Molecular Biology and Evolution, Oxford University Press (OUP), 2012, 29 (6), pp.1683-94. ⟨10.1093/molbev/mss015⟩, Molecular Biology and Evolution, 2012, 29 (6), pp.1683-94. ⟨10.1093/molbev/mss015⟩
- Publication Year :
- 2012
- Publisher :
- Oxford University Press (OUP), 2012.
-
Abstract
- International audience; Proteins exist as a dynamic ensemble of interconverting substates, which defines their conformational energy landscapes. Recent work has indicated that mutations that shift the balance between conformational substates (CSs) are one of the main mechanisms by which proteins evolve new functions. In the present study, we probe this assertion by examining phenotypic protein adaptation to extreme conditions, using the allosteric tetrameric lactate dehydrogenase (LDH) from the hyperthermophilic bacterium Thermus thermophilus (Tt) as a model enzyme. In the presence of fructose 1, 6 bis-phosphate (FBP), allosteric LDHs catalyze the conversion of pyruvate to lactate with concomitant oxidation of nicotinamide adenine dinucleotide, reduced form (NADH). The catalysis involves a structural transition between a low-affinity inactive "T-state" and a high-affinity active "R-state" with bound FBP. During this structural transition, two important residues undergo changes in their side chain conformations. These are R171 and H188, which are involved in substrate and FBP binding, respectively. We designed two mutants of Tt-LDH with one ("1-Mut") and five ("5-Mut") mutations distant from the active site and characterized their catalytic, dynamical, and structural properties. In 1-Mut Tt-LDH, without FBP, the K(m)(Pyr) is reduced compared with that of the wild type, which is consistent with a complete shifting of the CS equilibrium of H188 to that observed in the R-state. By contrast, the CS populations of R171, k(cat) and protein stability are little changed. In 5-Mut Tt-LDH, without FBP, K(m)(Pyr) approaches the values it has with FBP and becomes almost temperature independent, k(cat) increases substantially, and the CS populations of R171 shift toward those of the R-state. These changes are accompanied by a decrease in protein stability at higher temperature, which is consistent with an increased flexibility at lower temperature. Together, these results show that the thermal properties of an enzyme can be strongly modified by only a few or even a single mutation, which serve to alter the equilibrium and, hence, the relative populations of functionally important native-state CSs, without changing the nature of the CSs themselves. They also provide insights into the types of mutational pathways by which protein adaptation to temperature is achieved.
- Subjects :
- MESH: Enzyme Stability
Hot Temperature
Protein Conformation
Amino Acid Motifs
MESH: Catalytic Domain
MESH: Thermus thermophilus
Nicotinamide adenine dinucleotide
Crystallography, X-Ray
Protein Engineering
MESH: Allosteric Regulation
01 natural sciences
MESH: Amino Acid Motifs
chemistry.chemical_compound
MESH: Protein Conformation
Catalytic Domain
Enzyme Stability
Pyruvic Acid
Fructosediphosphates
MESH: Molecular Dynamics Simulation
MESH: Bacterial Proteins
chemistry.chemical_classification
0303 health sciences
MESH: Kinetics
biology
Thermus thermophilus
MESH: Amino Acid Substitution
MESH: Protein Engineering
MESH: Mutagenesis, Site-Directed
Biochemistry
Thermodynamics
MESH: Thermodynamics
MESH: L-Lactate Dehydrogenase
Allosteric regulation
MESH: Hot Temperature
Molecular Dynamics Simulation
010402 general chemistry
03 medical and health sciences
Allosteric Regulation
Bacterial Proteins
Oxidoreductase
Genetics
[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology
MESH: Fructosediphosphates
Lactic Acid
Enzyme kinetics
MESH: Pyruvic Acid
Molecular Biology
Ecology, Evolution, Behavior and Systematics
030304 developmental biology
L-Lactate Dehydrogenase
Wild type
Active site
MESH: Crystallography, X-Ray
biology.organism_classification
0104 chemical sciences
Kinetics
Enzyme
Amino Acid Substitution
chemistry
Mutagenesis, Site-Directed
biology.protein
Biophysics
MESH: Lactic Acid
Subjects
Details
- ISSN :
- 15371719 and 07374038
- Volume :
- 29
- Database :
- OpenAIRE
- Journal :
- Molecular Biology and Evolution
- Accession number :
- edsair.doi.dedup.....1cad6f4acec81c3293db17169f4ea99a
- Full Text :
- https://doi.org/10.1093/molbev/mss015