Back to Search Start Over

Pressure-driven micro-poro-mechanics: A variational framework for modeling the response of porous materials

Authors :
Felipe Álvarez-Barrientos
Martin Genet
Daniel E. Hurtado
Pontificia Universidad Católica de Chile (UC)
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Source :
International Journal of Engineering Science, International Journal of Engineering Science, Elsevier, 2021, 169, pp.103586. ⟨10.1016/j.ijengsci.2021.103586⟩, International Journal of Engineering Science, 2021, 169, pp.103586. ⟨10.1016/j.ijengsci.2021.103586⟩
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

International audience; Porous materials are highly relevant in engineering and medical applications due to their enhanced properties and lightweight nature. Current micromechanical models of porous materials can accurately predict the response under the assumptions of small deformations and drained conditions, typically driven by imposed deformations. However, the theoretical framework for the micromechanical modeling of porous material driven by pore pressure in the large-deformation range has been understudied. In this work, we develop a finite-deformation variational framework for pressure-driven foams, i.e., materials where the pore pressure in the cavities produces the deformation. We further consider different kinematical constraints in the formulation of boundary conditions: kinematic uniform displacements, periodic displacements and uniform traction. We apply the proposed model in the numerical simulation of lung porous tissue using a spherical alveolar geometry and an image-based geometry obtained from micro-computed-tomography images of rat lung. Our results show that the stress distributions in the spherical alveolar model are highly dependent on the kinematical constraints. In contrast, the stress distribution in the image-based alveolar model is not affected by the choice of boundary conditions. Further, when comparing the response of pressure-driven versus deformation-driven models, we conclude that hydrostatic stresses experience a marked shift in their distribution, whereas the deviatoric stresses remain unaffected. Our findings of how stresses are affected by the choice of boundary conditions and geometry take particular relevance in the simulation of the lungs, where the pressure-driven and deformation-driven cases are related to mechanical ventilation and spontaneous breathing.

Details

ISSN :
00207225
Volume :
169
Database :
OpenAIRE
Journal :
International Journal of Engineering Science
Accession number :
edsair.doi.dedup.....1cc85fb3846896153f13504967a89e8c
Full Text :
https://doi.org/10.1016/j.ijengsci.2021.103586