Back to Search Start Over

Protein-Level Statistical Analysis of Quantitative Label-Free Proteomics Data with ProStaR

Authors :
Florence Combes
Samuel Wieczorek
Hélène Borges
Thomas Burger
Etude de la dynamique des protéomes (EDyP )
Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Source :
Methods in Molecular Biology ISBN: 9781493991631, Proteomics for Biomarker Discovery, Proteomics for Biomarker Discovery, pp.225-246, 2019, Methods in Molecular Biology, ⟨10.1007/978-1-4939-9164-8_15⟩
Publication Year :
2019
Publisher :
Springer New York, 2019.

Abstract

International audience; ProStaR is a software tool dedicated to differential analysis in label-free quantitative proteomics. Practically, once biological samples have been analyzed by bottom-up mass spectrometry-based proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, by means of precursor ion chromatogram integration. Then, it is classical to use these peptide-level pieces of information to derive the identity and quantity of the sample proteins before proceeding with refined statistical processing at protein-level, so as to bring out proteins which abundance is significantly different between different groups of samples. To achieve this statistical step, it is possible to rely on ProStaR, which allows the user to (1) load correctly formatted data, (2) clean them by means of various filters, (3) normalize the sample batches, (4) impute the missing values, (5) perform null hypothesis significance testing, (6) check the well-calibration of the resulting p-values, (7) select a subset of differentially abundant proteins according to some false discovery rate, and (8) contextualize these selected proteins into the Gene Ontology. This chapter provide a detailed protocol on how to perform these eight processing steps with ProStaR.

Details

ISBN :
978-1-4939-9163-1
ISBNs :
9781493991631
Database :
OpenAIRE
Journal :
Methods in Molecular Biology ISBN: 9781493991631, Proteomics for Biomarker Discovery, Proteomics for Biomarker Discovery, pp.225-246, 2019, Methods in Molecular Biology, ⟨10.1007/978-1-4939-9164-8_15⟩
Accession number :
edsair.doi.dedup.....1d0bf0290a211121598f8ca9949ffe30