Back to Search
Start Over
Accuracy of Coupled Cluster Excited State Potential Energy Surfaces
- Source :
- Journal of chemical theory and computation. 14(11)
- Publication Year :
- 2018
-
Abstract
- The validation of the quality of the description of excited electronic states is of special importance in quantum chemistry as the general reliability of ab initio methods shows a much larger variation for these states than for the ground state. In this study, we investigate the quality of excited state energy gradients and potential energy surfaces on selected systems, as provided by the single reference coupled cluster variants CC2, CCSD, CCSD(T)(a)*, and CC3. Gradients and surface plots that follow the Franck–Condon forces are compared to the respective CCSDT reference values, thereby establishing a useful strategy for judging each variant’s accuracy. The results reveal serious flaws of lower order methods - in particular, CC2 - in several situations where they otherwise give accurate vertical excitation energies, as well as excellent accuracy and consistency of the recently proposed CCSD(T)(a)* method.
- Subjects :
- Physics
010304 chemical physics
Ab initio
010402 general chemistry
01 natural sciences
Potential energy
Quantum chemistry
0104 chemical sciences
Computer Science Applications
Computational physics
Quality (physics)
Coupled cluster
Excited state
0103 physical sciences
Physics::Chemical Physics
Physical and Theoretical Chemistry
Ground state
Excitation
Subjects
Details
- ISSN :
- 15499626
- Volume :
- 14
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- Journal of chemical theory and computation
- Accession number :
- edsair.doi.dedup.....1d1133e091a133fe3bcdc1b48675bd15