Back to Search Start Over

The McShane and the Pettis integral of Banach space-valued functions defined on ${\Bbb R}\sp m$

Authors :
Guoju Ye
Štefan Schwabik
Source :
Illinois J. Math. 46, no. 4 (2002), 1125-1144
Publication Year :
2002
Publisher :
Duke University Press, 2002.

Abstract

In this paper, we define and study the McShane integral of functions mapping a compact interval $I_0$ in $R^m$ into a Banach space $X$. We compare this integral with the Pettis integral and prove, in particular, that the two integrals are equivalent if $X$ is reflexive and the unit ball of the dual $X^*$ satisfies an additional condition (P). This gives additional information on an implicitly stated open problem of R.A. Gordon and on the work of D.H. Fremlin and J. Mendoza.

Details

ISSN :
00192082
Volume :
46
Database :
OpenAIRE
Journal :
Illinois Journal of Mathematics
Accession number :
edsair.doi.dedup.....1d1325b7e4485af549113d03d42ab253
Full Text :
https://doi.org/10.1215/ijm/1258138470