Back to Search Start Over

Formation of the 'peroxy' intermediate in cytochrome c oxidase is associated with internal proton/hydrogen transfer

Authors :
Martin Karpefors
Pia Ädelroth
Andreas Namslauer
Yuejun Zhen
Peter Brzezinski
Source :
Biochemistry. 39(47)
Publication Year :
2000

Abstract

When dioxygen is reduced to water by cytochrome c oxidase a sequence of oxygen intermediates are formed at the reaction site. One of these intermediates is called the "peroxy" (P) intermediate. It can be formed by reacting the two-electron reduced (mixed-valence) cytochrome c oxidase with dioxygen (called P(m)), but it is also formed transiently during the reaction of the fully reduced enzyme with oxygen (called P(r)). In recent years, evidence has accumulated to suggest that the O-O bond is cleaved in the P intermediate and that the heme a(3) iron is in the oxo-ferryl state. In this study, we have investigated the kinetic and thermodynamic parameters for formation of P(m) and P(r), respectively, in the Rhodobacter sphaeroides enzyme. The rate constants and activation energies for the formation of the P(r) and P(m) intermediates were 1.4 x 10(4) s(-1) ( approximately 20 kJ/mol) and 3 x 10(3) s(-1) ( approximately 24 kJ/mol), respectively. The formation rates of both P intermediates were independent of pH in the range 6.5-9, and there was no proton uptake from solution during P formation. Nevertheless, formation of both P(m) and P(r) were slowed by a factor of 1.4-1.9 in D(2)O, which suggests that transfer of an internal proton or hydrogen atom is involved in the rate-limiting step of P formation. We discuss the origin of the difference in the formation rates of the P(m) and P(r) intermediates, the formation mechanisms of P(m)/P(r), and the involvement of these intermediates in proton pumping.

Details

ISSN :
00062960
Volume :
39
Issue :
47
Database :
OpenAIRE
Journal :
Biochemistry
Accession number :
edsair.doi.dedup.....1d2967e9f062f3080829c5169129f181