Back to Search
Start Over
Microbial and genetic-based framework identifies drug targets in inflammatory bowel disease
- Source :
- Theranostics
- Publication Year :
- 2021
- Publisher :
- Ivyspring International Publisher, 2021.
-
Abstract
- Rationale: With increasing incidence and prevalence of inflammatory bowel disease (IBD), it has become one of the major public health threats, and there is an urgent need to develop new therapeutic agents. Although the pathogenesis of IBD is still unclear, previous research has provided evidence for complex interplays between genetic, immune, microbial, and environmental factors. Here, we constructed a gene-microbiota interaction-based framework to discover IBD biomarkers and therapeutics. Methods: We identified candidate biomarkers for IBD by analyzing the publicly available transcriptomic and microbiome data from IBD cohorts. Animal models of IBD and diarrhea were established. The inflammation-correlated microbial and genetic variants in gene knockout mice were identified by 16S rRNA sequences and PCR array. We performed bioinformatic analysis of microbiome functional prediction and drug repurposing. Our validation experiments with cells and animals confirmed anti-inflammatory properties of a drug candidate. Results: We identified the DNA-sensing enzyme cyclic GMP-AMP synthase (cGAS) as a potential biomarker for IBD in both patients and murine models. cGAS knockout mice were less susceptible to DSS-induced colitis. cGAS-associated gut microbiota and host genetic factors relating to IBD pathogenesis were also identified. Using a computational drug repurposing approach, we predicted 43 candidate drugs with high potency to reverse colitis-associated gene expression and validated that brefeldin-a mitigates inflammatory response in colitis mouse model and colon cancer cell lines. Conclusions: By integrating computational screening, microbiota interference, gene knockout techniques, and in vitro and in vivo validation, we built a framework for predicting biomarkers and host-microbe interaction targets and identifying repurposing drugs for IBD, which may be tested further for clinical application. This approach may also be a tool for repurposing drugs for treating other diseases.
- Subjects :
- 0301 basic medicine
Medicine (miscellaneous)
Computational biology
Gut flora
digestive system
Inflammatory bowel disease
Mice
cyclic GMP-AMP synthase (cGAS)
03 medical and health sciences
Drug Delivery Systems
0302 clinical medicine
medicine
Animals
Humans
Microbiome
Colitis
Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
brefeldin-a
Repurposing
Gene knockout
host transcriptome-microbiome interaction
Mice, Knockout
drug repurposing
biology
business.industry
Inflammatory Bowel Diseases
medicine.disease
biology.organism_classification
Nucleotidyltransferases
digestive system diseases
Gastrointestinal Microbiome
Drug repositioning
030104 developmental biology
Gene Expression Regulation
030220 oncology & carcinogenesis
Gene Knockout Techniques
business
Biomarkers
Research Paper
Subjects
Details
- ISSN :
- 18387640
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Theranostics
- Accession number :
- edsair.doi.dedup.....1d69fcb9651f942f769db6c2ed341f95
- Full Text :
- https://doi.org/10.7150/thno.59196