Back to Search Start Over

An Integrin Binding-defective Mutant of Insulin-like Growth Factor-1 (R36E/R37E IGF1) Acts as a Dominant-negative Antagonist of the IGF1 Receptor (IGF1R) and Suppresses Tumorigenesis but Still Binds to IGF1R*

Authors :
Masaaki Fujita
Jane Q. Chen
Robert D. Cardiff
Alexander D. Borowsky
Yoko K. Takada
Yoshikazu Takada
Machelle D. Wilson
Dora M. Cedano-Prieto
Mac H. Wu
Katsuaki Ieguchi
Charles Wilkerson
Andrew Fong
Anthony T.W. Cheung
Su Hao Lo
Publication Year :
2013
Publisher :
American Society for Biochemistry and Molecular Biology, 2013.

Abstract

Insulin-like growth factor-1 (IGF1) is a major therapeutic target for cancer. We recently reported that IGF1 directly binds to integrins (αvβ3 and α6β4) and induces ternary complex formation (integrin-IGF1-IGF1 receptor (IGF1R)) and that the integrin binding-defective mutant of IGF1 (R36E/R37E) is defective in signaling and ternary complex formation. These findings predict that R36E/R37E competes with WT IGF1 for binding to IGF1R and inhibits IGF signaling. Here, we described that excess R36E/R37E suppressed cell viability increased by WT IGF1 in vitro in non-transformed cells. We studied the effect of R36E/R37E on viability and tumorigenesis in cancer cell lines. We did not detect an effect of WT IGF1 or R36E/R37E in cancer cells under anchorage-dependent conditions. However, under anchorage-independent conditions, WT IGF1 enhanced cell viability and induced signals, whereas R36E/R37E did not. Notably, excess R36E/R37E suppressed cell viability and signaling induced by WT IGF1 under anchorage-independent conditions. Using cancer cells stably expressing WT IGF1 or R36E/R37E, we determined that R36E/R37E suppressed tumorigenesis in vivo, whereas WT IGF1 markedly enhanced it. R36E/R37E suppressed the binding of WT IGF1 to the cell surface and the subsequent ternary complex formation induced by WT IGF1. R36E/R37E suppressed activation of IGF1R by insulin. WT IGF1, but not R36E/R37E, induced ternary complex formation with the IGF1R/insulin receptor hybrid. These findings suggest that 1) IGF1 induces signals under anchorage-independent conditions and that 2) R36E/R37E acts as a dominant-negative inhibitor of IGF1R (IGF1 decoy). Our results are consistent with a model in which ternary complex formation is critical for IGF signaling. Background: The integrin binding-defective mutant of IGF1 (R36E/R37E) is functionally defective and does not induce ternary complex formation (integrin-IGF1-IGF1R). Results: R36E/R37E suppressed signaling induced by WT IGF1, the binding of WT IGF1 to cells, ternary complex formation, cell viability, and tumorigenesis. Conclusion: R36E/R37E is a dominant-negative antagonist of IGF signaling. Significance: R36E/R37E has potential as a therapeutic agent.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....1dbdfde737e717e0b6d3219667d1531d