Back to Search Start Over

Recent advances in the LHD experiment

Authors :
Tsuyoshi Akiyama
Makoto Ichimura
T. Uda
T. Saida
Nobuhiro Nishino
Mizuki Sakamoto
Motoshi Goto
N. Ashikawa
N. Noda
Kazuo Kawahata
S. Morita
Shinji Yoshimura
J. Miyazawa
Nobuyoshi Ohyabu
Hidenobu Takenaga
H. Nozato
Fumimichi Sano
O. Motojima
Satoru Sakakibara
T. Yamamoto
Shinichiro Kado
Masami Fujiwara
Takaki Hatae
Yuki Torii
H. Ninomiya
Nobuyuki Asakura
Y. Teramachi
Hideya Nakanishi
T. Tokuzawa
T. Kobuchi
Mikiro Yoshinuma
Naomichi Ezumi
K. Saito
Osamu Kaneko
B.J. Peterson
H. Kubo
Kenkichi Ushigusa
Akio Sagara
Satoshi Ohdachi
Kimitaka Itoh
T. Fukuda
H. Funaba
Atsushi Fukuyama
Ryuichi Sakamoto
Mitsutaka Isobe
Y. Hamada
S. Okamura
Yoshihide Oka
Shinsaku Imagawa
Masayuki Yokoyama
Yukio Sakamoto
Sadatsugu Muto
Masahide Sato
Akihiko Isayama
Naoki Tamura
Ryuhei Kumazawa
K. V. Khlopenkov
S. Murakami
A. Kostrioukov
A. Komori
Y. Narushima
Y. Nakamura
Katsunori Ikeda
Yunfeng Liang
Mamoru Shoji
Katsumi Ida
Hajime Suzuki
W. A. Cooper
S. Sudo
M. Y. Tanaka
Hideki Zushi
Masaki Osakabe
Y. Tomota
P. R. Goncharov
Ichihiro Yamada
Mamiko Sasao
Shin Kubo
K. Matsuoka
T Oikawa
K. Nagaoka
Atsushi Mase
Tomohiro Morisaki
Tetsuo Seki
T. Nakano
Yutaka Kamada
Yasuo Yoshimura
T. Watari
T. Suzuki
Takashi Satow
K. Narihara
Hiroshi Yamada
K.Y. Watanabe
Hiroyuki Okada
Suguru Masuzaki
S. Yamamoto
S. Higashijima
K. Toi
Y. Xu
Noriyoshi Nakajima
K. Shinohara
Tomoaki Hino
I. Ohtake
Toshiyuki Mito
Shigeru Inagaki
Takashi Shimozuma
T. Minami
Takashi Mutoh
Naoyuki Oyama
Kenji Tanaka
H. Kawazome
Kuninori Sato
N. Takeuchi
Katsumasa Nakamura
Kunizo Ohkubo
Katsuyoshi Tsumori
Takashi Notake
J. F. Lyon
K. Nishimura
Yoshio Nagayama
Takaaki Fujita
Y. Kusama
Hiroshi Idei
K. Yamazaki
Y. Miura
Akira Ejiri
Y. Takeiri
M. Emoto
Yuichi Takase
Katsumi Kondo
T. Ozaki
Source :
ResearcherID

Abstract

In the first four years of the LHD experiment, several encouraging results have emerged, the most significant of which is that MHD stability and good transport are compatible in the inward shifted axis configuration. The observed energy confinement at this optimal configuration is consistent with ISS95 scaling with an enhancement factor of 1.5. The confinement enhancement over the smaller heliotron devices is attributed to the high edge temperature. We find that the plasma with an average beta of 3% is stable in this configuration, even though the theoretical stability conditions of Mercier modes and pressure driven low-n modes are violated. In the low density discharges heated by NBI and ECR, internal transport barrier (ITB) and an associated high central temperature (> 10 keV) are seen. The radial electric field measured in these discharges is positive (electron root) and expected to play a key role in the formation of the ITB. The positive electric field is also found to suppress the ion thermal diffusivity as predicted by neoclassical transport theory. The width of the externally imposed island (n/m = 1/1) is found to decrease when the plasma is collisionless with finite beta and increase when the plasma is collisional. The ICRF heating in LHD is successful and a high energy tail (up to 500 keV) has been detected for minority ion heating, demonstrating good confinement of the high energy particles. The magnetic field line structure unique to the heliotron edge configuration is confirmed by measuring the plasma density and temperature profiles on the divertor plate. A long pulse (2 min) discharge with an ICRF power of 0.4 MW has been demonstrated and the energy confinement characteristics are almost the same as those in short pulse discharges.

Details

Database :
OpenAIRE
Journal :
ResearcherID
Accession number :
edsair.doi.dedup.....1dc8e89cd12b2767fdb9dfcedf00492b