Back to Search Start Over

Approximating the densest sublattice from Rankin's inequality

Authors :
Jianwei Li
Phong Q. Nguyen
Institute for Advanced Study [Tsinghua]
Tsinghua University [Beijing] (THU)
Cryptanalyse (CRYPT)
Laboratoire Franco-Chinois d'Informatique, d'Automatique et de Mathématiques Appliquées (LIAMA)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Chinese Academy of Sciences [Changchun Branch] (CAS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institute of Automation - Chinese Academy of Sciences-Centre National de la Recherche Scientifique (CNRS)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Chinese Academy of Sciences [Changchun Branch] (CAS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institute of Automation - Chinese Academy of Sciences-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)
Tsinghua University [Beijing]
Source :
LMS Journal of Computation and Mathematics, LMS Journal of Computation and Mathematics, London Mathematical Society, 2014, Special Issue A (Algorithmic Number Theory Symposium XI), 7 (A), pp.92-111. ⟨10.1112/S1461157014000333⟩, LMS Journal of Computation and Mathematics, 2014, Special Issue A (Algorithmic Number Theory Symposium XI), 7 (A), pp.92-111. ⟨10.1112/S1461157014000333⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Proceedings of Algorithmic Number Theory Symposium XI, GyeongJu, Korea, 6-11 August 2014; International audience; We present a higher-dimensional generalization of the Gama{Nguyen algorithm (STOC '08) for approximating the shortest vector problem in a lattice. This generalization approximates the densest sublattice by using a subroutine solving the exact problem in low dimension, such as the Dadush{Micciancio algorithm (SODA '13). Our approximation factor corresponds to a natural inequality on Rankin's constant derived from Rankin's inequality.

Details

Language :
English
ISSN :
14611570
Database :
OpenAIRE
Journal :
LMS Journal of Computation and Mathematics, LMS Journal of Computation and Mathematics, London Mathematical Society, 2014, Special Issue A (Algorithmic Number Theory Symposium XI), 7 (A), pp.92-111. ⟨10.1112/S1461157014000333⟩, LMS Journal of Computation and Mathematics, 2014, Special Issue A (Algorithmic Number Theory Symposium XI), 7 (A), pp.92-111. ⟨10.1112/S1461157014000333⟩
Accession number :
edsair.doi.dedup.....1eb1b538fad1b587397659b64050b7a3
Full Text :
https://doi.org/10.1112/S1461157014000333⟩