Back to Search
Start Over
Design and Characterization of a Lightweight and Fully Portable Remote Actuation System for Use With a Hand Exoskeleton
- Source :
- IEEE Robotics and Automation Letters. 1:976-983
- Publication Year :
- 2016
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2016.
-
Abstract
- Enabling individuals who are living with reduced mobility of the hand to utilize portable exoskeletons at home has the potential to deliver rehabilitation therapies with a greater intensity and relevance to activities of daily living. Various hand exoskeleton designs have been explored in the past, however, devices have remained nonportable and cumbersome for the intended users. Here we investigate a remote actuation system for wearable hand exoskeletons, which moves weight from the weakened limb to the shoulders, reducing the burden on the user and improving portability. A push-pull Bowden cable was used to transmit actuator forces from a backpack to the hand with strict attention paid to total system weight, size, and the needs of the target population. We present the design and integration of this system into a previously presented hand exoskeleton, as well as its characterization. Integration of remote actuation reduced the exoskeleton weight by 56% to 113g without adverse effects to functionality. Total actuation system weight was kept to 754g. The loss of positional accuracy inherent with Bowden cable transmissions was compensated for through closed loop positional control of the transmission output. The achieved weight reduction makes hand exoskeletons more suitable to the intended user, which will permit the study of their effectiveness in providing long duration, high intensity, and targeted rehabilitation as well as functional assistance.
- Subjects :
- 030506 rehabilitation
0209 industrial biotechnology
Engineering
Control and Optimization
Biomedical Engineering
Wearable computer
Bowden cable
02 engineering and technology
law.invention
03 medical and health sciences
Software portability
020901 industrial engineering & automation
Artificial Intelligence
law
Rehabilitation robotics
Simulation
business.industry
Mechanical Engineering
Control engineering
Computer Science Applications
Exoskeleton
Human-Computer Interaction
Transmission (telecommunications)
Control and Systems Engineering
Computer Vision and Pattern Recognition
0305 other medical science
Actuator
business
Closed loop
Subjects
Details
- ISSN :
- 23773774
- Volume :
- 1
- Database :
- OpenAIRE
- Journal :
- IEEE Robotics and Automation Letters
- Accession number :
- edsair.doi.dedup.....1eb4f438095a9048feda28f366675565
- Full Text :
- https://doi.org/10.1109/lra.2016.2528296