Back to Search Start Over

Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder

Authors :
Danielle C. Lynch
Jia Wang
Aurora Pujol
Henry Houlden
Diana Castro
Xiaodong Wang
Jan Senderek
Shade B. Moody
Melissa Gibbons
Tim M. Strom
Abigail Collins
Jong Hee Chae
John Landers
Udai Bhan Pandey
Tyler R. Fortuna
Reza Maroofian
Hannah R. McCurry
Andrea H. Németh
Yuehua Zhang
Nathalie Boddaert
Carsten G. Bönnemann
Sabine Rudnik-Schöneborn
Vincent Cantagrel
Kali Juliette
Jeanne Amiel
Amber Begtrup
Sangmoon Lee
David Schorling
Chanika Phornphutkul
Konrad Platzer
E. Corina Andriescu
Roser Urreizti
Eric N. Anderson
Cyril Gitiaux
Randal Richardson
Maha S. Zaki
Matias Wagner
Hasnaa M. Elbendary
Dhivyaa Rajasundaram
Brian Kirmse
Murim Choi
Sandra Donkervoort
Joseph G. Gleeson
Steffen Leiz
Mahmoud Y. Issa
Valentina Stanley
Patrick Frosk
Siri Lynne Rydning
Karine Siquier
Janbernd Kirschner
Sameer Agnihotri
Sarah S. Barnett
Isabelle Desguerre
Michele Yang
Yong Beom Shin
Deepa S. Rajan
Margot A. Cousin
Andrés Nascimento Osorio
A. Micheil Innes
Ying Yang
Elliot S. Stolerman
Youngha Lee
Kimberly McDonald
Alberto Garcia-Oguiza
Edgard Verdura
Caroline Ward
Maria J. Guillen Sacoto
Minghui Wang
Sukhleen Kour
Kaja Kristine Selmer
Source :
NATURE COMMUNICATIONS, r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, Fundació Sant Joan de Déu, Nature Communications, r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, Universidad de Alicante (UA), Nature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.<br />GEMIN5, an RNA-binding protein, is required for formation of small nuclear ribonucleoproteins. Here, the authors identify loss of function mutations in GEMIN5 that are associated with a human neurodevelopmental disorder.

Details

ISSN :
20411723
Volume :
12
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....1ed9687e3344ab597c47489b1520ba6f
Full Text :
https://doi.org/10.1038/s41467-021-22627-w